Пример #1
0
def Curve(F, A=None):
    """
    Return the plane or space curve defined by ``F``, where ``F`` can be either
    a multivariate polynomial, a list or tuple of polynomials, or an algebraic
    scheme.

    If no ambient space is passed in for ``A``, and if ``F`` is not an
    algebraic scheme, a new ambient space is constructed.

    Also not specifying an ambient space will cause the curve to be defined in
    either affine or projective space based on properties of ``F``. In
    particular, if ``F`` contains a nonhomogenous polynomial, the curve is
    affine, and if ``F`` consists of homogenous polynomials, then the curve is
    projective.

    INPUT:

    - ``F`` -- a multivariate polynomial, or a list or tuple of polynomials, or an algebraic scheme.

    - ``A`` -- (default: None) an ambient space in which to create the curve.

    EXAMPLES: A projective plane curve.  ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve(x^3 + y^3 + z^3); C
        Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3
        sage: C.genus()
        1

    Affine plane curves.  ::

        sage: x,y = GF(7)['x,y'].gens()
        sage: C = Curve(y^2 + x^3 + x^10); C
        Affine Plane Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2
        sage: C.genus()
        0
        sage: x, y = QQ['x,y'].gens()
        sage: Curve(x^3 + y^3 + 1)
        Affine Plane Curve over Rational Field defined by x^3 + y^3 + 1

    A projective space curve.  ::

        sage: x,y,z,w = QQ['x,y,z,w'].gens()
        sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C
        Projective Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4
        sage: C.genus()
        13

    An affine space curve.  ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve([y^2 + x^3 + x^10 + z^7,  x^2 + y^2]); C
        Affine Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2
        sage: C.genus()
        47

    We can also make non-reduced non-irreducible curves.  ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: Curve((x-y)*(x+y))
        Projective Conic Curve over Rational Field defined by x^2 - y^2
        sage: Curve((x-y)^2*(x+y)^2)
        Projective Plane Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4

    A union of curves is a curve.  ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve(x^3 + y^3 + z^3)
        sage: D = Curve(x^4 + y^4 + z^4)
        sage: C.union(D)
        Projective Plane Curve over Rational Field defined by
        x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7

    The intersection is not a curve, though it is a scheme.  ::

        sage: X = C.intersection(D); X
        Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
         x^3 + y^3 + z^3,
         x^4 + y^4 + z^4

    Note that the intersection has dimension 0.  ::

        sage: X.dimension()
        0
        sage: I = X.defining_ideal(); I
        Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field

    If only a polynomial in three variables is given, then it must be
    homogeneous such that a projective curve is constructed.  ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: Curve(x^2+y^2)
        Projective Conic Curve over Rational Field defined by x^2 + y^2
        sage: Curve(x^2+y^2+z)
        Traceback (most recent call last):
        ...
        TypeError: x^2 + y^2 + z is not a homogeneous polynomial

    An ambient space can be specified to construct a space curve in an affine
    or a projective space.  ::

        sage: A.<x,y,z> = AffineSpace(QQ, 3)
        sage: C = Curve([y - x^2, z - x^3], A)
        sage: C
        Affine Curve over Rational Field defined by -x^2 + y, -x^3 + z
        sage: A == C.ambient_space()
        True

    The defining polynomial must be nonzero unless the ambient space itself is
    of dimension 1. ::

        sage: P1.<x,y> = ProjectiveSpace(1,GF(5))
        sage: S = P1.coordinate_ring()
        sage: Curve(S(0), P1)
        Projective Line over Finite Field of size 5
        sage: Curve(P1)
        Projective Line over Finite Field of size 5

    ::

        sage: A1.<x> = AffineSpace(1, QQ)
        sage: R = A1.coordinate_ring()
        sage: Curve(R(0), A1)
        Affine Line over Rational Field
        sage: Curve(A1)
        Affine Line over Rational Field

    """
    if A is None:
        if is_AmbientSpace(F) and F.dimension() == 1:
            return Curve(F.coordinate_ring().zero(), F)

        if is_AlgebraicScheme(F):
            return Curve(F.defining_polynomials(), F.ambient_space())

        if isinstance(F, (list, tuple)):
            P = Sequence(F).universe()
            if not is_MPolynomialRing(P):
                raise TypeError("universe of F must be a multivariate polynomial ring")
            for f in F:
                if not f.is_homogeneous():
                    A = AffineSpace(P.ngens(), P.base_ring(), names=P.variable_names())
                    A._coordinate_ring = P
                    break
            else:
                A = ProjectiveSpace(P.ngens()-1, P.base_ring(), names=P.variable_names())
                A._coordinate_ring = P
        elif is_MPolynomial(F): # define a plane curve
            P = F.parent()
            k = F.base_ring()

            if not k.is_field():
                if k.is_integral_domain():  # upgrade to a field
                    P = P.change_ring(k.fraction_field())
                    F = P(F)
                    k = F.base_ring()
                else:
                    raise TypeError("not a multivariate polynomial over a field or an integral domain")

            if F.parent().ngens() == 2:
                if F == 0:
                    raise ValueError("defining polynomial of curve must be nonzero")
                A = AffineSpace(2, P.base_ring(), names=P.variable_names())
                A._coordinate_ring = P
            elif F.parent().ngens() == 3:
                if F == 0:
                    raise ValueError("defining polynomial of curve must be nonzero")

                # special case: construct a conic curve
                if F.total_degree() == 2 and k.is_field():
                    return Conic(k, F)

                A = ProjectiveSpace(2, P.base_ring(), names=P.variable_names())
                A._coordinate_ring = P
            elif F.parent().ngens() == 1:
                if not F.is_zero():
                    raise ValueError("defining polynomial of curve must be zero "
                                     "if the ambient space is of dimension 1")

                A = AffineSpace(1, P.base_ring(), names=P.variable_names())
                A._coordinate_ring = P
            else:
                raise TypeError("number of variables of F (={}) must be 2 or 3".format(F))
            F = [F]
        else:
            raise TypeError("F (={}) must be a multivariate polynomial".format(F))
    else:
        if not is_AmbientSpace(A):
            raise TypeError("ambient space must be either an affine or projective space")
        if not isinstance(F, (list, tuple)):
            F = [F]
        if  not all(f.parent() == A.coordinate_ring() for f in F):
            raise TypeError("need a list of polynomials of the coordinate ring of {}".format(A))

    n = A.dimension_relative()
    if n < 1:
        raise TypeError("ambient space should be an affine or projective space of positive dimension")

    k = A.base_ring()

    if is_AffineSpace(A):
        if n != 2:
            if is_FiniteField(k):
                if A.coordinate_ring().ideal(F).is_prime():
                    return IntegralAffineCurve_finite_field(A, F)
            if k in Fields():
                if k == QQ and A.coordinate_ring().ideal(F).is_prime():
                    return IntegralAffineCurve(A, F)
                return AffineCurve_field(A, F)
            return AffineCurve(A, F)

        if not (len(F) == 1 and F[0] != 0 and F[0].degree() > 0):
            raise TypeError("need a single nonconstant polynomial to define a plane curve")

        F = F[0]
        if is_FiniteField(k):
            if _is_irreducible_and_reduced(F):
                return IntegralAffinePlaneCurve_finite_field(A, F)
            return AffinePlaneCurve_finite_field(A, F)
        if k in Fields():
            if k == QQ and _is_irreducible_and_reduced(F):
                return IntegralAffinePlaneCurve(A, F)
            return AffinePlaneCurve_field(A, F)
        return AffinePlaneCurve(A, F)

    elif is_ProjectiveSpace(A):
        if n != 2:
            if not all(f.is_homogeneous() for f in F):
                raise TypeError("polynomials defining a curve in a projective space must be homogeneous")
            if is_FiniteField(k):
                if A.coordinate_ring().ideal(F).is_prime():
                    return IntegralProjectiveCurve_finite_field(A, F)
            if k in Fields():
                if k == QQ and A.coordinate_ring().ideal(F).is_prime():
                    return IntegralProjectiveCurve(A, F)
                return ProjectiveCurve_field(A, F)
            return ProjectiveCurve(A, F)

        # There is no dimension check when initializing a plane curve, so check
        # here that F consists of a single nonconstant polynomial.
        if not (len(F) == 1 and F[0] != 0 and F[0].degree() > 0):
            raise TypeError("need a single nonconstant polynomial to define a plane curve")

        F = F[0]
        if not F.is_homogeneous():
            raise TypeError("{} is not a homogeneous polynomial".format(F))

        if is_FiniteField(k):
            if _is_irreducible_and_reduced(F):
                return IntegralProjectivePlaneCurve_finite_field(A, F)
            return ProjectivePlaneCurve_finite_field(A, F)
        if k in Fields():
            if k == QQ and _is_irreducible_and_reduced(F):
                return IntegralProjectivePlaneCurve(A, F)
            return ProjectivePlaneCurve_field(A, F)
        return ProjectivePlaneCurve(A, F)

    else:
        raise TypeError('ambient space neither affine nor projective')
Пример #2
0
def Mestre_conic(i, xyz=False, names='u,v,w'):
    r"""
    Return the conic equation from Mestre's algorithm given the Igusa-Clebsch
    invariants.

    It has a rational point if and only if a hyperelliptic curve
    corresponding to the invariants exists.

    INPUT:

    - ``i`` - list or tuple of length 4 containing the four Igusa-Clebsch
      invariants: I2, I4, I6, I10
    - ``xyz`` - Boolean (default: False) if True, the algorithm also
      returns three invariants x,y,z used in Mestre's algorithm
    - ``names`` (default: 'u,v,w') - the variable names for the Conic

    OUTPUT:

    A Conic object

    EXAMPLES:

    A standard example::

        sage: Mestre_conic([1,2,3,4])
        Projective Conic Curve over Rational Field defined by -2572155000*u^2 - 317736000*u*v + 1250755459200*v^2 + 2501510918400*u*w + 39276887040*v*w + 2736219686912*w^2

    Note that the algorithm works over number fields as well::

        sage: k = NumberField(x^2-41,'a')
        sage: a = k.an_element()
        sage: Mestre_conic([1,2+a,a,4+a])
        Projective Conic Curve over Number Field in a with defining polynomial x^2 - 41 defined by (-801900000*a + 343845000)*u^2 + (855360000*a + 15795864000)*u*v + (312292800000*a + 1284808579200)*v^2 + (624585600000*a + 2569617158400)*u*w + (15799910400*a + 234573143040)*v*w + (2034199306240*a + 16429854656512)*w^2

    And over finite fields::

        sage: Mestre_conic([GF(7)(10),GF(7)(1),GF(7)(2),GF(7)(3)])
        Projective Conic Curve over Finite Field of size 7 defined by -2*u*v - v^2 - 2*u*w + 2*v*w - 3*w^2

    An example with xyz::

        sage: Mestre_conic([5,6,7,8], xyz=True)
        (Projective Conic Curve over Rational Field defined by -415125000*u^2 + 608040000*u*v + 33065136000*v^2 + 66130272000*u*w + 240829440*v*w + 10208835584*w^2, 232/1125, -1072/16875, 14695616/2109375)

    ALGORITHM:

    The formulas are taken from pages 956 - 957 of [LY2001]_ and based on pages
    321 and 332 of [M1991]_.

    See the code or [LY2001]_ for the detailed formulae defining x, y, z and L.

    """
    from sage.structure.sequence import Sequence
    k = Sequence(i).universe()
    try:
        k = k.fraction_field()
    except (TypeError, AttributeError, NotImplementedError):
        pass

    I2, I4, I6, I10 = i

    #Setting x,y,z as in Mestre's algorithm (Using Lauter and Yang's formulas)
    x = 8 * (1 + 20 * I4 / (I2**2)) / 225
    y = 16 * (1 + 80 * I4 / (I2**2) - 600 * I6 / (I2**3)) / 3375
    z = -64 * (-10800000 * I10 / (I2**5) - 9 - 700 * I4 / (I2**2) + 3600 * I6 /
               (I2**3) + 12400 * I4**2 / (I2**4) - 48000 * I4 * I6 /
               (I2**5)) / 253125

    L = Matrix([[x + 6 * y, 6 * x**2 + 2 * y, 2 * z],
                [6 * x**2 + 2 * y, 2 * z, 9 * x**3 + 4 * x * y + 6 * y**2],
                [
                    2 * z, 9 * x**3 + 4 * x * y + 6 * y**2,
                    6 * x**2 * y + 2 * y**2 + 3 * x * z
                ]])

    try:
        L = L * L.denominator()  # clears the denominator
    except (AttributeError, TypeError):
        pass

    u, v, w = PolynomialRing(k, names).gens()
    MConic = Conic(k, L, names)
    if xyz:
        return MConic, x, y, z
    return MConic
Пример #3
0
def Curve(F, A=None):
    """
    Return the plane or space curve defined by ``F``, where
    ``F`` can be either a multivariate polynomial, a list or
    tuple of polynomials, or an algebraic scheme.

    If no ambient space is passed in for ``A``, and if ``F`` is not
    an algebraic scheme, a new ambient space is constructed.

    Also not specifying an ambient space will cause the curve to be defined
    in either affine or projective space based on properties of ``F``. In
    particular, if ``F`` contains a nonhomogenous polynomial, the curve is
    affine, and if ``F`` consists of homogenous polynomials, then the curve
    is projective.

    INPUT:

    - ``F`` -- a multivariate polynomial, or a list or tuple of polynomials, or an algebraic scheme.

    - ``A`` -- (default: None) an ambient space in which to create the curve.

    EXAMPLE: A projective plane curve

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve(x^3 + y^3 + z^3); C
        Projective Plane Curve over Rational Field defined by x^3 + y^3 + z^3
        sage: C.genus()
        1

    EXAMPLE: Affine plane curves

    ::

        sage: x,y = GF(7)['x,y'].gens()
        sage: C = Curve(y^2 + x^3 + x^10); C
        Affine Plane Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2
        sage: C.genus()
        0
        sage: x, y = QQ['x,y'].gens()
        sage: Curve(x^3 + y^3 + 1)
        Affine Plane Curve over Rational Field defined by x^3 + y^3 + 1

    EXAMPLE: A projective space curve

    ::

        sage: x,y,z,w = QQ['x,y,z,w'].gens()
        sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C
        Projective Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4
        sage: C.genus()
        13

    EXAMPLE: An affine space curve

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve([y^2 + x^3 + x^10 + z^7,  x^2 + y^2]); C
        Affine Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2
        sage: C.genus()
        47

    EXAMPLE: We can also make non-reduced non-irreducible curves.

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: Curve((x-y)*(x+y))
        Projective Conic Curve over Rational Field defined by x^2 - y^2
        sage: Curve((x-y)^2*(x+y)^2)
        Projective Plane Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4

    EXAMPLE: A union of curves is a curve.

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve(x^3 + y^3 + z^3)
        sage: D = Curve(x^4 + y^4 + z^4)
        sage: C.union(D)
        Projective Plane Curve over Rational Field defined by
        x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7

    The intersection is not a curve, though it is a scheme.

    ::

        sage: X = C.intersection(D); X
        Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
         x^3 + y^3 + z^3,
         x^4 + y^4 + z^4

    Note that the intersection has dimension `0`.

    ::

        sage: X.dimension()
        0
        sage: I = X.defining_ideal(); I
        Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field

    EXAMPLE: In three variables, the defining equation must be
    homogeneous.

    If the parent polynomial ring is in three variables, then the
    defining ideal must be homogeneous.

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: Curve(x^2+y^2)
        Projective Conic Curve over Rational Field defined by x^2 + y^2
        sage: Curve(x^2+y^2+z)
        Traceback (most recent call last):
        ...
        TypeError: x^2 + y^2 + z is not a homogeneous polynomial

    The defining polynomial must always be nonzero::

        sage: P1.<x,y> = ProjectiveSpace(1,GF(5))
        sage: Curve(0*x)
        Traceback (most recent call last):
        ...
        ValueError: defining polynomial of curve must be nonzero

    ::

        sage: A.<x,y,z> = AffineSpace(QQ, 3)
        sage: C = Curve([y - x^2, z - x^3], A)
        sage: A == C.ambient_space()
        True
    """
    if not A is None:
        if not isinstance(F, (list, tuple)):
            return Curve([F], A)
        if not is_AmbientSpace(A):
            raise TypeError(
                "A (=%s) must be either an affine or projective space" % A)
        if not all([f.parent() == A.coordinate_ring() for f in F]):
            raise TypeError("F (=%s) must be a list or tuple of polynomials of the coordinate ring of " \
            "A (=%s)"%(F, A))
        n = A.dimension_relative()
        if n < 2:
            raise TypeError(
                "A (=%s) must be either an affine or projective space of dimension > 1"
                % A)
        # there is no dimension check when initializing a plane curve, so check here that F consists
        # of a single nonconstant polynomial
        if n == 2:
            if len(F) != 1 or F[0] == 0 or not is_MPolynomial(F[0]):
                raise TypeError(
                    "F (=%s) must consist of a single nonconstant polynomial to define a plane curve"
                    % (F, ))
        if is_AffineSpace(A):
            if n > 2:
                return AffineCurve(A, F)
            k = A.base_ring()
            if is_FiniteField(k):
                if k.is_prime_field():
                    return AffinePlaneCurve_prime_finite_field(A, F[0])
                return AffinePlaneCurve_finite_field(A, F[0])
            return AffinePlaneCurve(A, F[0])
        elif is_ProjectiveSpace(A):
            if not all([f.is_homogeneous() for f in F]):
                raise TypeError(
                    "polynomials defining a curve in a projective space must be homogeneous"
                )
            if n > 2:
                return ProjectiveCurve(A, F)
            k = A.base_ring()
            if is_FiniteField(k):
                if k.is_prime_field():
                    return ProjectivePlaneCurve_prime_finite_field(A, F[0])
                return ProjectivePlaneCurve_finite_field(A, F[0])
            return ProjectivePlaneCurve(A, F[0])

    if is_AlgebraicScheme(F):
        return Curve(F.defining_polynomials(), F.ambient_space())

    if isinstance(F, (list, tuple)):
        if len(F) == 1:
            return Curve(F[0])
        F = Sequence(F)
        P = F.universe()
        if not is_MPolynomialRing(P):
            raise TypeError(
                "universe of F must be a multivariate polynomial ring")

        for f in F:
            if not f.is_homogeneous():
                A = AffineSpace(P.ngens(), P.base_ring())
                A._coordinate_ring = P
                return AffineCurve(A, F)

        A = ProjectiveSpace(P.ngens() - 1, P.base_ring())
        A._coordinate_ring = P
        return ProjectiveCurve(A, F)

    if not is_MPolynomial(F):
        raise TypeError("F (=%s) must be a multivariate polynomial" % F)

    P = F.parent()
    k = F.base_ring()
    if F.parent().ngens() == 2:
        if F == 0:
            raise ValueError("defining polynomial of curve must be nonzero")
        A2 = AffineSpace(2, P.base_ring())
        A2._coordinate_ring = P

        if is_FiniteField(k):
            if k.is_prime_field():
                return AffinePlaneCurve_prime_finite_field(A2, F)
            else:
                return AffinePlaneCurve_finite_field(A2, F)
        else:
            return AffinePlaneCurve(A2, F)

    elif F.parent().ngens() == 3:
        if F == 0:
            raise ValueError("defining polynomial of curve must be nonzero")
        P2 = ProjectiveSpace(2, P.base_ring())
        P2._coordinate_ring = P

        if F.total_degree() == 2 and k.is_field():
            return Conic(F)

        if is_FiniteField(k):
            if k.is_prime_field():
                return ProjectivePlaneCurve_prime_finite_field(P2, F)
            else:
                return ProjectivePlaneCurve_finite_field(P2, F)
        else:
            return ProjectivePlaneCurve(P2, F)

    else:

        raise TypeError("Number of variables of F (=%s) must be 2 or 3" % F)
Пример #4
0
def Curve(F):
    """
    Return the plane or space curve defined by `F`, where
    `F` can be either a multivariate polynomial, a list or
    tuple of polynomials, or an algebraic scheme.

    If `F` is in two variables the curve is affine, and if it
    is homogenous in `3` variables, then the curve is
    projective.

    EXAMPLE: A projective plane curve

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve(x^3 + y^3 + z^3); C
        Projective Curve over Rational Field defined by x^3 + y^3 + z^3
        sage: C.genus()
        1

    EXAMPLE: Affine plane curves

    ::

        sage: x,y = GF(7)['x,y'].gens()
        sage: C = Curve(y^2 + x^3 + x^10); C
        Affine Curve over Finite Field of size 7 defined by x^10 + x^3 + y^2
        sage: C.genus()
        0
        sage: x, y = QQ['x,y'].gens()
        sage: Curve(x^3 + y^3 + 1)
        Affine Curve over Rational Field defined by x^3 + y^3 + 1

    EXAMPLE: A projective space curve

    ::

        sage: x,y,z,w = QQ['x,y,z,w'].gens()
        sage: C = Curve([x^3 + y^3 - z^3 - w^3, x^5 - y*z^4]); C
        Projective Space Curve over Rational Field defined by x^3 + y^3 - z^3 - w^3, x^5 - y*z^4
        sage: C.genus()
        13

    EXAMPLE: An affine space curve

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve([y^2 + x^3 + x^10 + z^7,  x^2 + y^2]); C
        Affine Space Curve over Rational Field defined by x^10 + z^7 + x^3 + y^2, x^2 + y^2
        sage: C.genus()
        47

    EXAMPLE: We can also make non-reduced non-irreducible curves.

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: Curve((x-y)*(x+y))
        Projective Conic Curve over Rational Field defined by x^2 - y^2
        sage: Curve((x-y)^2*(x+y)^2)
        Projective Curve over Rational Field defined by x^4 - 2*x^2*y^2 + y^4

    EXAMPLE: A union of curves is a curve.

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: C = Curve(x^3 + y^3 + z^3)
        sage: D = Curve(x^4 + y^4 + z^4)
        sage: C.union(D)
        Projective Curve over Rational Field defined by
        x^7 + x^4*y^3 + x^3*y^4 + y^7 + x^4*z^3 + y^4*z^3 + x^3*z^4 + y^3*z^4 + z^7

    The intersection is not a curve, though it is a scheme.

    ::

        sage: X = C.intersection(D); X
        Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
         x^3 + y^3 + z^3,
         x^4 + y^4 + z^4

    Note that the intersection has dimension `0`.

    ::

        sage: X.dimension()
        0
        sage: I = X.defining_ideal(); I
        Ideal (x^3 + y^3 + z^3, x^4 + y^4 + z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field

    EXAMPLE: In three variables, the defining equation must be
    homogeneous.

    If the parent polynomial ring is in three variables, then the
    defining ideal must be homogeneous.

    ::

        sage: x,y,z = QQ['x,y,z'].gens()
        sage: Curve(x^2+y^2)
        Projective Conic Curve over Rational Field defined by x^2 + y^2
        sage: Curve(x^2+y^2+z)
        Traceback (most recent call last):
        ...
        TypeError: x^2 + y^2 + z is not a homogeneous polynomial!

    The defining polynomial must always be nonzero::

        sage: P1.<x,y> = ProjectiveSpace(1,GF(5))
        sage: Curve(0*x)
        Traceback (most recent call last):
        ...
        ValueError: defining polynomial of curve must be nonzero
    """
    if is_AlgebraicScheme(F):
        return Curve(F.defining_polynomials())

    if isinstance(F, (list, tuple)):
        if len(F) == 1:
            return Curve(F[0])
        F = Sequence(F)
        P = F.universe()
        if not is_MPolynomialRing(P):
            raise TypeError, "universe of F must be a multivariate polynomial ring"

        for f in F:
            if not f.is_homogeneous():
                A = AffineSpace(P.ngens(), P.base_ring())
                A._coordinate_ring = P
                return AffineSpaceCurve_generic(A, F)

        A = ProjectiveSpace(P.ngens() - 1, P.base_ring())
        A._coordinate_ring = P
        return ProjectiveSpaceCurve_generic(A, F)

    if not is_MPolynomial(F):
        raise TypeError, "F (=%s) must be a multivariate polynomial" % F

    P = F.parent()
    k = F.base_ring()
    if F.parent().ngens() == 2:
        if F == 0:
            raise ValueError, "defining polynomial of curve must be nonzero"
        A2 = AffineSpace(2, P.base_ring())
        A2._coordinate_ring = P

        if is_FiniteField(k):
            if k.is_prime_field():
                return AffineCurve_prime_finite_field(A2, F)
            else:
                return AffineCurve_finite_field(A2, F)
        else:
            return AffineCurve_generic(A2, F)

    elif F.parent().ngens() == 3:
        if F == 0:
            raise ValueError, "defining polynomial of curve must be nonzero"
        P2 = ProjectiveSpace(2, P.base_ring())
        P2._coordinate_ring = P

        if F.total_degree() == 2 and k.is_field():
            return Conic(F)

        if is_FiniteField(k):
            if k.is_prime_field():
                return ProjectiveCurve_prime_finite_field(P2, F)
            else:
                return ProjectiveCurve_finite_field(P2, F)
        else:
            return ProjectiveCurve_generic(P2, F)

    else:

        raise TypeError, "Number of variables of F (=%s) must be 2 or 3" % F