Пример #1
0
def test_async_fit(sagemaker_session, mxnet_full_version):
    endpoint_name = 'test-mxnet-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout(minutes=5):
        script_path = os.path.join(DATA_DIR, 'mxnet_mnist', 'mnist.py')
        data_path = os.path.join(DATA_DIR, 'mxnet_mnist')

        mx = MXNet(entry_point=script_path, role='SageMakerRole', py_version=PYTHON_VERSION,
                   train_instance_count=1, train_instance_type='ml.c4.xlarge',
                   sagemaker_session=sagemaker_session, framework_version=mxnet_full_version,
                   distributions={'parameter_server': {'enabled': True}})

        train_input = mx.sagemaker_session.upload_data(path=os.path.join(data_path, 'train'),
                                                       key_prefix='integ-test-data/mxnet_mnist/train')
        test_input = mx.sagemaker_session.upload_data(path=os.path.join(data_path, 'test'),
                                                      key_prefix='integ-test-data/mxnet_mnist/test')

        mx.fit({'train': train_input, 'test': test_input}, wait=False)
        training_job_name = mx.latest_training_job.name

        print("Waiting to re-attach to the training job: %s" % training_job_name)
        time.sleep(20)

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        print("Re-attaching now to: %s" % training_job_name)
        estimator = MXNet.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
        data = numpy.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
def test_attach_deploy(
    mxnet_training_job, sagemaker_session, cpu_instance_type, cpu_instance_family
):
    endpoint_name = unique_name_from_base("test-neo-attach-deploy")

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = MXNet.attach(mxnet_training_job, sagemaker_session=sagemaker_session)

        estimator.compile_model(
            target_instance_family=cpu_instance_family,
            input_shape={"data": [1, 1, 28, 28]},
            output_path=estimator.output_path,
        )

        serializer = JSONSerializer(content_type="application/vnd+python.numpy+binary")

        predictor = estimator.deploy(
            1,
            cpu_instance_type,
            serializer=serializer,
            use_compiled_model=True,
            endpoint_name=endpoint_name,
        )
        data = numpy.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
def test_async_fit(sagemaker_session):
    endpoint_name = 'test-mxnet-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout(minutes=5):
        script_path = os.path.join(DATA_DIR, 'mxnet_mnist', 'mnist.py')
        data_path = os.path.join(DATA_DIR, 'mxnet_mnist')

        mx = MXNet(entry_point=script_path, role='SageMakerRole',
                   train_instance_count=1, train_instance_type='ml.c4.xlarge',
                   sagemaker_session=sagemaker_session)

        train_input = mx.sagemaker_session.upload_data(path=os.path.join(data_path, 'train'),
                                                       key_prefix='integ-test-data/mxnet_mnist/train')
        test_input = mx.sagemaker_session.upload_data(path=os.path.join(data_path, 'test'),
                                                      key_prefix='integ-test-data/mxnet_mnist/test')

        mx.fit({'train': train_input, 'test': test_input}, wait=False)
        training_job_name = mx.latest_training_job.name

        print("Waiting to re-attach to the training job: %s" % training_job_name)
        time.sleep(20)

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        print("Re-attaching now to: %s" % training_job_name)
        estimator = MXNet.attach(training_job_name=training_job_name, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
        data = numpy.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
Пример #4
0
def test_attach_deploy(mxnet_training_job, sagemaker_session):
    endpoint_name = 'test-mxnet-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = MXNet.attach(mxnet_training_job, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
        data = numpy.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
def test_attach_deploy(mxnet_training_job, sagemaker_session):
    endpoint_name = 'test-mxnet-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = MXNet.attach(mxnet_training_job, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, 'ml.m4.xlarge', endpoint_name=endpoint_name)
        data = numpy.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
Пример #6
0
def test_attach_deploy(mxnet_training_job, sagemaker_session, cpu_instance_type):
    endpoint_name = "test-mxnet-attach-deploy-{}".format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = MXNet.attach(mxnet_training_job, sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1, cpu_instance_type, endpoint_name=endpoint_name)
        data = numpy.zeros(shape=(1, 1, 28, 28))
        result = predictor.predict(data)
        assert result is not None
Пример #7
0
def test_edge_packaging_job(mxnet_training_job, sagemaker_session):
    estimator = MXNet.attach(mxnet_training_job, sagemaker_session=sagemaker_session)
    model = estimator.compile_model(
        target_instance_family="rasp3b",
        input_shape={"data": [1, 1, 28, 28], "softmax_label": [1]},
        output_path=estimator.output_path,
    )

    model.package_for_edge(
        output_path=estimator.output_path,
        role=estimator.role,
        model_name="sdk-test-model",
        model_version="1.0",
    )
Пример #8
0
def test_attach_deploy(mxnet_training_job, sagemaker_session):
    with timeout(minutes=15):
        estimator = MXNet.attach(mxnet_training_job,
                                 sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(
            1,
            'ml.m4.xlarge',
            endpoint_name='test-mxnet-attach-deploy-{}'.format(int(
                time.time())))
        try:
            data = numpy.zeros(shape=(1, 1, 28, 28))
            predictor.predict(data)
        finally:
            sagemaker_session.delete_endpoint(predictor.endpoint)
Пример #9
0
def test_async_fit(
    sagemaker_session,
    mxnet_training_latest_version,
    mxnet_inference_latest_py_version,
    cpu_instance_type,
):
    endpoint_name = "test-mxnet-attach-deploy-{}".format(sagemaker_timestamp())

    with timeout(minutes=5):
        script_path = os.path.join(DATA_DIR, "mxnet_mnist", "mnist.py")
        data_path = os.path.join(DATA_DIR, "mxnet_mnist")

        mx = MXNet(
            entry_point=script_path,
            role="SageMakerRole",
            py_version=mxnet_inference_latest_py_version,
            instance_count=1,
            instance_type=cpu_instance_type,
            sagemaker_session=sagemaker_session,
            framework_version=mxnet_training_latest_version,
            distribution={"parameter_server": {
                "enabled": True
            }},
        )

        train_input = mx.sagemaker_session.upload_data(
            path=os.path.join(data_path, "train"),
            key_prefix="integ-test-data/mxnet_mnist/train")
        test_input = mx.sagemaker_session.upload_data(
            path=os.path.join(data_path, "test"),
            key_prefix="integ-test-data/mxnet_mnist/test")

        mx.fit({"train": train_input, "test": test_input}, wait=False)
        training_job_name = mx.latest_training_job.name

        print("Waiting to re-attach to the training job: %s" %
              training_job_name)
        time.sleep(20)

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        print("Re-attaching now to: %s" % training_job_name)
        estimator = MXNet.attach(training_job_name=training_job_name,
                                 sagemaker_session=sagemaker_session)
        predictor = estimator.deploy(1,
                                     cpu_instance_type,
                                     endpoint_name=endpoint_name)
        data = numpy.zeros(shape=(1, 1, 28, 28))
        result = predictor.predict(data)
        assert result is not None
def test_attach_deploy(mxnet_training_job, sagemaker_session):
    endpoint_name = 'test-mxnet-attach-deploy-{}'.format(sagemaker_timestamp())

    with timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session):
        estimator = MXNet.attach(mxnet_training_job,
                                 sagemaker_session=sagemaker_session)

        estimator.compile_model(target_instance_family='ml_m4',
                                input_shape={'data': [1, 1, 28, 28]},
                                output_path=estimator.output_path)

        predictor = estimator.deploy(1,
                                     'ml.m4.xlarge',
                                     use_compiled_model=True,
                                     endpoint_name=endpoint_name)
        predictor.content_type = "application/vnd+python.numpy+binary"
        data = numpy.zeros(shape=(1, 1, 28, 28))
        predictor.predict(data)
Пример #11
0
def test_deploy_estimator_with_different_instance_types(
    mxnet_training_job,
    sagemaker_session,
    cpu_instance_type,
    alternative_cpu_instance_type,
):
    def _deploy_estimator_and_assert_instance_type(estimator, instance_type):
        # don't use timeout_and_delete_endpoint_by_name because this tests if
        # deploy() creates a new endpoint config/endpoint each time
        with timeout(minutes=45):
            try:
                predictor = estimator.deploy(1, instance_type)

                model_name = predictor._model_names[0]
                config_name = sagemaker_session.sagemaker_client.describe_endpoint(
                    EndpointName=predictor.endpoint_name
                )["EndpointConfigName"]
                config = sagemaker_session.sagemaker_client.describe_endpoint_config(
                    EndpointConfigName=config_name
                )
            finally:
                predictor.delete_model()
                predictor.delete_endpoint()

        assert config["ProductionVariants"][0]["InstanceType"] == instance_type

        return (model_name, predictor.endpoint_name, config_name)

    estimator = MXNet.attach(mxnet_training_job, sagemaker_session)
    estimator.base_job_name = "test-mxnet-deploy-twice"

    old_model_name, old_endpoint_name, old_config_name = _deploy_estimator_and_assert_instance_type(
        estimator, cpu_instance_type
    )
    new_model_name, new_endpoint_name, new_config_name = _deploy_estimator_and_assert_instance_type(
        estimator, alternative_cpu_instance_type
    )

    assert old_model_name != new_model_name
    assert old_endpoint_name != new_endpoint_name
    assert old_config_name != new_config_name