Пример #1
0
def run_as_local_main():
    args = parse_infer_args()
    sm_boto3 = boto3.client('sagemaker')
    sess = sagemaker.Session()
    region = sess.boto_session.region_name
    model_url = args.model_file
    model = SKLearnModel(model_data=model_url,
                         source_dir=os.path.abspath(os.path.dirname(__file__)),
                         role=get_sm_execution_role(ON_SAGEMAKER_NOTEBOOK,
                                                    region),
                         entry_point='inference.py')

    infer_mode = args.infer_mode
    if 'bt' == infer_mode:
        env = {'MODEL_SERVER_TIMEOUT': '120'}
        transformer = model.transformer(
            instance_count=1,
            instance_type='ml.c5.xlarge',
            output_path=args.output_dir,
            max_payload=99,
            env=env,
            max_concurrent_transforms=1,
            tags=[{
                "Key": "Project",
                "Value": "SM Example"
            }],
        )
        transformer.transform(args.input_file, content_type="text/csv")
        transformer.wait()
    elif 'ep' == infer_mode:
        model.deploy(instance_type='ml.c5.xlarge', initial_instance_count=1)
    else:
        raise Exception(f'Unknown inference mode {infer_mode}')
 def attach_model(self):
     # Ok this is working -> Just need to provide a model func
     self.model = SKLearnModel(model_data=self.model_path,
                               role=aws_role,
                               entry_point=self.script_path,
                               framework_version="0.20.0",
                               sagemaker_session=self.session)
Пример #3
0
def test_private_github_with_2fa(sagemaker_local_session,
                                 sklearn_latest_version,
                                 sklearn_latest_py_version):
    script_path = "mnist.py"
    data_path = os.path.join(DATA_DIR, "sklearn_mnist")
    git_config = {
        "repo": PRIVATE_GIT_REPO_2FA,
        "branch": PRIVATE_BRANCH_2FA,
        "commit": PRIVATE_COMMIT_2FA,
        "2FA_enabled": True,
        "token": "",  # TODO: find a secure approach
    }
    source_dir = "sklearn"

    sklearn = SKLearn(
        entry_point=script_path,
        role="SageMakerRole",
        source_dir=source_dir,
        py_version=sklearn_latest_py_version,
        instance_count=1,
        instance_type="local",
        sagemaker_session=sagemaker_local_session,
        framework_version=sklearn_latest_version,
        hyperparameters={"epochs": 1},
        git_config=git_config,
    )
    train_input = "file://" + os.path.join(data_path, "train")
    test_input = "file://" + os.path.join(data_path, "test")
    sklearn.fit({"train": train_input, "test": test_input})

    assert os.path.isdir(sklearn.source_dir)

    with lock.lock(LOCK_PATH):
        try:
            client = sagemaker_local_session.sagemaker_client
            desc = client.describe_training_job(
                TrainingJobName=sklearn.latest_training_job.name)
            model_data = desc["ModelArtifacts"]["S3ModelArtifacts"]
            model = SKLearnModel(
                model_data,
                "SageMakerRole",
                entry_point=script_path,
                framework_version=sklearn_latest_version,
                source_dir=source_dir,
                sagemaker_session=sagemaker_local_session,
                git_config=git_config,
            )
            predictor = model.deploy(1, "local")

            data = numpy.zeros((100, 784), dtype="float32")
            result = predictor.predict(data)
            assert result is not None
        finally:
            predictor.delete_endpoint()
Пример #4
0
    def create_model(self, model_server_workers=None, role=None,
                     vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs):
        """Create a SageMaker ``SKLearnModel`` object that can be deployed to an ``Endpoint``.

        Args:
            role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``, which is also used during
                transform jobs. If not specified, the role from the Estimator will be used.
            model_server_workers (int): Optional. The number of worker processes used by the inference server.
                If None, server will use one worker per vCPU.
            vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on the model.
                Default: use subnets and security groups from this Estimator.
                * 'Subnets' (list[str]): List of subnet ids.
                * 'SecurityGroupIds' (list[str]): List of security group ids.
            **kwargs: Passed to initialization of ``SKLearnModel``.

        Returns:
            sagemaker.sklearn.model.SKLearnModel: A SageMaker ``SKLearnModel`` object.
                See :func:`~sagemaker.sklearn.model.SKLearnModel` for full details.
        """
        role = role or self.role
        return SKLearnModel(self.model_data, role, self.entry_point, source_dir=self._model_source_dir(),
                            enable_cloudwatch_metrics=self.enable_cloudwatch_metrics, name=self._current_job_name,
                            container_log_level=self.container_log_level, code_location=self.code_location,
                            py_version=self.py_version, framework_version=self.framework_version,
                            model_server_workers=model_server_workers, image=self.image_name,
                            sagemaker_session=self.sagemaker_session,
                            vpc_config=self.get_vpc_config(vpc_config_override),
                            **kwargs)
class Deployment:
    def __init__(self, model_path, script_path):
        self.model_path = model_path
        self.script_path = script_path
        self.session = get_sagemaker_session()
        self.attach_model()

    def attach_model(self):
        # Ok this is working -> Just need to provide a model func
        self.model = SKLearnModel(model_data=self.model_path,
                                  role=aws_role,
                                  entry_point=self.script_path,
                                  framework_version="0.20.0",
                                  sagemaker_session=self.session)

    def deploy(self):
        self.predictor = self.model.deploy(instance_type="ml.c4.xlarge",
                                           initial_instance_count=1,
                                           wait=False)
        self.deployed = True

    def get_endpointname(self):
        return self.predictor.endpoint_name
Пример #6
0
    def create_model(
        self,
        model_server_workers=None,
        role=None,
        vpc_config_override=VPC_CONFIG_DEFAULT,
        entry_point=None,
        source_dir=None,
        dependencies=None,
        **kwargs
    ):
        """Create a SageMaker ``SKLearnModel`` object that can be deployed to an
        ``Endpoint``.

        Args:
            model_server_workers (int): Optional. The number of worker processes
                used by the inference server. If None, server will use one
                worker per vCPU.
            role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``,
                which is also used during transform jobs. If not specified, the
                role from the Estimator will be used.
            vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
                the model. Default: use subnets and security groups from this Estimator.
                * 'Subnets' (list[str]): List of subnet ids.
                * 'SecurityGroupIds' (list[str]): List of security group ids.
            entry_point (str): Path (absolute or relative) to the local Python source file which
                should be executed as the entry point to training. If ``source_dir`` is specified,
                then ``entry_point`` must point to a file located at the root of ``source_dir``.
                If not specified, the training entry point is used.
            source_dir (str): Path (absolute or relative) to a directory with any other serving
                source code dependencies aside from the entry point file.
                If not specified, the model source directory from training is used.
            dependencies (list[str]): A list of paths to directories (absolute or relative) with
                any additional libraries that will be exported to the container.
                If not specified, the dependencies from training are used.
            **kwargs: Additional kwargs passed to the :class:`~sagemaker.sklearn.model.SKLearnModel`
                constructor.

        Returns:
            sagemaker.sklearn.model.SKLearnModel: A SageMaker ``SKLearnModel``
            object. See :func:`~sagemaker.sklearn.model.SKLearnModel` for full details.
        """
        role = role or self.role

        if "image" not in kwargs:
            kwargs["image"] = self.image_name

        if "enable_network_isolation" not in kwargs:
            kwargs["enable_network_isolation"] = self.enable_network_isolation()

        if "name" not in kwargs:
            kwargs["name"] = self._current_job_name

        return SKLearnModel(
            self.model_data,
            role,
            entry_point or self.entry_point,
            source_dir=(source_dir or self._model_source_dir()),
            enable_cloudwatch_metrics=self.enable_cloudwatch_metrics,
            container_log_level=self.container_log_level,
            code_location=self.code_location,
            py_version=self.py_version,
            framework_version=self.framework_version,
            model_server_workers=model_server_workers,
            sagemaker_session=self.sagemaker_session,
            vpc_config=self.get_vpc_config(vpc_config_override),
            dependencies=(dependencies or self.dependencies),
            **kwargs
        )
Пример #7
0
def main(datacapture=False):
    # Load config from environment and set required defaults
    # AWS especific
    AWS_DEFAULT_REGION = os.getenv('AWS_DEFAULT_REGION', 'eu-west-1')
    AWS_PROFILE = os.getenv('AWS_PROFILE', 'default')
    AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID', None)
    AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY', None)
    b3_session, sm_client, sm_runtime, sm_session = get_sm_session(
        region=AWS_DEFAULT_REGION,
        profile_name=AWS_PROFILE,
        aws_access_key_id=AWS_ACCESS_KEY_ID,
        aws_secret_access_key=AWS_SECRET_ACCESS_KEY
    )
    ROLE_ARN = os.getenv('AWS_ROLE', sagemaker.get_execution_role())

    MODEL_PACKAGE_GROUP_NAME = os.getenv(
        'MODEL_PACKAGE_GROUP_NAME', 'sts-sklearn-grp')
    BASE_JOB_PREFIX = os.getenv('BASE_JOB_PREFIX', 'sts')

    # define useful const's
    bucket = sm_session.default_bucket()
    endpoint_name = "{}-sklearn-{}".format(
        BASE_JOB_PREFIX,
        datetime.datetime.now().strftime("%Y%m%d%H%M")
    )
    prefix = "{}/{}".format(BASE_JOB_PREFIX, endpoint_name)
    data_capture_prefix = "{}/datacapture".format(prefix)
    s3_capture_upload_path = "s3://{}/{}".format(bucket, data_capture_prefix)
    # outputs is a dict to save to json
    outputs = dict()

    if datacapture is True:
        # if data capture was enabled output the S3 Uri for data capture
        outputs['monitor'] = {
            's3_capture_upload_path': s3_capture_upload_path
        }

    # get the last version aproved in the model package group
    model_package_arn = get_approved_package(
        MODEL_PACKAGE_GROUP_NAME, sm_client)
    _l.info(f"Latest approved model package: {model_package_arn}")
    model_info = sm_client.describe_model_package(
        ModelPackageName=model_package_arn)
    outputs['model_info'] = model_info
    model_uri = model_info.get(
        'InferenceSpecification')['Containers'][0]['ModelDataUrl']
    _l.info(f"Model data uri: {model_uri}")

    sk_model = SKLearnModel(
        model_uri,  # s3 uri for the model.tar.gz
        ROLE_ARN,   # sagemaker role to be used
        'model_loader.py',  # script to load the model
        framework_version='0.23-1'
    )

    data_capture_config=None
    if datacapture is True:
        # if data capture was enabled generated the required config
        _l.info("Enabling data capture as requested")
        _l.info(f"s3_capture_upload_path: {s3_capture_upload_path}")
        data_capture_config = DataCaptureConfig(
            enable_capture=True, sampling_percentage=100, 
            destination_s3_uri=s3_capture_upload_path,
            capture_options=["REQUEST", "RESPONSE"],
            sagemaker_session=sm_session
        )

    # Deploy the endpoint
    predictor = sk_model.deploy(
        instance_type="ml.m5.xlarge", 
        initial_instance_count=1,
        serializer=CSVSerializer(),
        deserializer=CSVDeserializer(),
        data_capture_config=data_capture_config,
        endpoint_name=endpoint_name
    )

    _l.info(f"Endpoint name: {predictor.endpoint_name}")
    outputs['endpoint'] = {
        'name': endpoint_name,
        'config_name': predictor.endpoint_name # is the same as the endpoint ?
    }
    outputs['model_info'].update({"name": sk_model.name})
    # ENDPOINT deploy done

    # save useful outputs to a file
    with open('deploymodel_out.json', 'w') as f:
        json.dump(outputs, f, default=json_default)
Пример #8
0
# In[ ]:

sm_boto3 = boto3.client('sagemaker')
artifact = sm_boto3.describe_training_job(
    TrainingJobName=sklearn_estimator.latest_training_job.name
)['ModelArtifacts']['S3ModelArtifacts']

print('Model artifact persisted at ' + artifact)

# In[ ]:

from sagemaker.sklearn.model import SKLearnModel

model = SKLearnModel(model_data=artifact,
                     role=get_execution_role(),
                     entry_point='script.py')
endpoint_name = 'auroraml-churn-endpoint'

model.deploy(instance_type='ml.c5.large',
             initial_instance_count=1,
             endpoint_name=endpoint_name)

# In[ ]:

import sagemaker.sklearn
from sagemaker.predictor import json_serializer, csv_serializer, json_deserializer, RealTimePredictor
from sagemaker.content_types import CONTENT_TYPE_CSV, CONTENT_TYPE_JSON

predictor = RealTimePredictor(endpoint=endpoint_name,
                              sagemaker_session=sess,
Пример #9
0
    args = parse_infer_args()
    sm_boto3 = boto3.client('sagemaker')
    sess = sagemaker.Session()
    region = sess.boto_session.region_name
    model_url = args.model_file

    # Define a SKLearn Transformer from the trained SKLearn Estimator
    # transformer = sklearn_preprocessor.transformer(
    #     instance_count=1, 
    #     instance_type='ml.m4.xlarge',
    #     assemble_with = 'Line',
    #     accept = 'text/csv')

    model = SKLearnModel(
        model_data=model_url,
        source_dir=os.path.abspath(os.path.dirname(__file__)),
        role=get_sm_execution_role(False, region),
        entry_point='infer_preproc.py')
    
    infer_mode = args.infer_mode
    if 'bt' == infer_mode:
        env = {'MODEL_SERVER_TIMEOUT':'120'}
        transformer = model.transformer(
            instance_count=1,
            instance_type='ml.m4.xlarge',
            output_path=args.output_dir,
            assemble_with='Line',
            max_payload=99,
            accept='text/csv',
            env=env,
            max_concurrent_transforms=1,
Пример #10
0
def test_jumpstart_sklearn_image_uri(patched_get_model_specs, session):

    patched_get_model_specs.side_effect = get_prototype_model_spec

    model_id, model_version = "sklearn-classification-linear", "*"
    instance_type = "ml.m2.xlarge"
    region = "us-west-2"

    model_specs = accessors.JumpStartModelsAccessor.get_model_specs(
        region, model_id, model_version)

    # inference
    uri = image_uris.retrieve(
        framework=None,
        region=region,
        image_scope="inference",
        model_id=model_id,
        model_version=model_version,
        instance_type=instance_type,
    )

    framework_class_uri = SKLearnModel(
        role="mock_role",
        model_data="mock_data",
        entry_point="mock_entry_point",
        framework_version=model_specs.hosting_ecr_specs.framework_version,
        py_version=model_specs.hosting_ecr_specs.py_version,
        sagemaker_session=session,
    ).serving_image_uri(region, instance_type)

    assert uri == framework_class_uri
    assert (
        uri ==
        "246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-scikit-learn:0.23-1-cpu-py3"
    )

    # training
    uri = image_uris.retrieve(
        framework=None,
        region=region,
        image_scope="training",
        model_id=model_id,
        model_version=model_version,
        instance_type=instance_type,
    )

    framework_class_uri = SKLearn(
        role="mock_role",
        entry_point="mock_entry_point",
        framework_version=model_specs.training_ecr_specs.framework_version,
        py_version=model_specs.training_ecr_specs.py_version,
        instance_type=instance_type,
        instance_count=1,
        image_uri_region=region,
        sagemaker_session=session,
    ).training_image_uri(region=region)

    assert uri == framework_class_uri
    assert (
        uri ==
        "246618743249.dkr.ecr.us-west-2.amazonaws.com/sagemaker-scikit-learn:0.23-1-cpu-py3"
    )

    with pytest.raises(ValueError):
        image_uris.retrieve(
            framework=None,
            region="us-west-2",
            image_scope="training",
            model_id=model_id,
            model_version=model_version,
            instance_type="ml.p2.xlarge",
        )
Пример #11
0
"""
Inference batch transform job interacts with SageMaker
"""

if __name__ == "__main__":
    args = parse_infer_args()
    sm_boto3 = boto3.client('sagemaker')
    sess = sagemaker.Session()
    region = sess.boto_session.region_name
    model_url = args.model_file
    preproc_model_url = args.preproc_model
    sm_role = get_sm_execution_role(False, region)

    preproc_model = SKLearnModel(model_data=preproc_model_url,
                                 source_dir=os.path.abspath(
                                     os.path.dirname(__file__)),
                                 role=sm_role,
                                 entry_point='infer_preproc.py',
                                 sagemaker_session=sess)

    ll_image = get_image_uri(region, 'linear-learner')

    ll_model = Model(model_data=model_url,
                     image=ll_image,
                     role=sm_role,
                     sagemaker_session=sess)

    timestamp_prefix = strftime("%Y-%m-%d-%H-%M-%S", gmtime())

    model_name = 'inference-pipeline-' + timestamp_prefix
    endpoint_name = 'inference-pipeline-ep-' + timestamp_prefix
    sm_model = PipelineModel(name=model_name,