Пример #1
0
def test_timestamp_index_error(nc_dataset):
    """timestamp returns expected Arrow instance
    """
    nc_dataset.createDimension('time_counter')
    time_counter = nc_dataset.createVariable('time_counter', float,
                                             ('time_counter', ))
    time_counter.time_origin = '2002-OCT-26 00:00:00'
    time_counter[:] = np.array([8.5 * 60 * 60])
    with pytest.raises(IndexError):
        nc_tools.timestamp(nc_dataset, 1)
Пример #2
0
def _prep_plot_data(grid_T_hr, timezone, tidal_predictions):
    results_t_start, results_t_end = nc_tools.timestamp(grid_T_hr, (0, -1))
    ttide = shared.get_tides("Point Atkinson", tidal_predictions)
    ttide.time = ttide.time.dt.tz_convert(pytz.timezone(timezone))
    plot_data = namedtuple("PlotData", "results_t_start, results_t_end, ttide")
    return plot_data(results_t_start.to(timezone), results_t_end.to(timezone),
                     ttide)
Пример #3
0
def test_timestamp_value(nc_dataset):
    """timestamp returns expected Arrow instance
    """
    nc_dataset.createDimension('time_counter')
    time_counter = nc_dataset.createVariable('time_counter', float,
                                             ('time_counter', ))
    time_counter.time_origin = '2002-OCT-26 00:00:00'
    time_counter[:] = np.array([8.5 * 60 * 60])
    timestamp = nc_tools.timestamp(nc_dataset, 0)
    assert timestamp == arrow.get(2002, 10, 26, 8, 30, 0)
def _prep_plot_data(
    place,
    grid_T_hr,
    grids_15m,
    bathy,
    timezone,
    weather_path,
    tidal_predictions,
):
    ssh_hr = grid_T_hr.variables['sossheig']
    time_ssh_hr = nc_tools.timestamp(
        grid_T_hr, range(grid_T_hr.variables['time_counter'].size))
    try:
        j, i = places.PLACES[place]['NEMO grid ji']
    except KeyError as e:
        raise KeyError(f'place name or info key not found in '
                       f'salishsea_tools.places.PLACES: {e}')
    itime_max_ssh = np.argmax(ssh_hr[:, j, i])
    time_max_ssh_hr = time_ssh_hr[itime_max_ssh]
    ssh_15m_ts = nc_tools.ssh_timeseries_at_point(grids_15m[place],
                                                  0,
                                                  0,
                                                  datetimes=True)
    ttide = shared.get_tides(place, tidal_predictions)
    ssh_corr = shared.correct_model_ssh(ssh_15m_ts.ssh, ssh_15m_ts.time, ttide)
    max_ssh_15m, time_max_ssh_15m = shared.find_ssh_max(
        place, ssh_15m_ts, ttide)
    tides_15m = shared.interp_to_model_time(ssh_15m_ts.time, ttide.pred_all,
                                            ttide.time)
    residual = ssh_corr - tides_15m
    max_ssh_residual = residual[ssh_15m_ts.time == time_max_ssh_15m][0]
    wind_4h_avg = wind_tools.calc_wind_avg_at_point(
        arrow.get(time_max_ssh_15m),
        weather_path,
        places.PLACES[place]['wind grid ji'],
        avg_hrs=-4)
    wind_4h_avg = wind_tools.wind_speed_dir(*wind_4h_avg)
    plot_data = namedtuple(
        'PlotData', 'ssh_max_field, time_max_ssh_hr, ssh_15m_ts, ssh_corr, '
        'max_ssh_15m, time_max_ssh_15m, residual, max_ssh_residual, '
        'wind_4h_avg, '
        'ttide, bathy')
    return plot_data(
        ssh_max_field=ssh_hr[itime_max_ssh],
        time_max_ssh_hr=time_max_ssh_hr.to(timezone),
        ssh_15m_ts=ssh_15m_ts,
        ssh_corr=ssh_corr,
        max_ssh_15m=max_ssh_15m - places.PLACES[place]['mean sea lvl'],
        time_max_ssh_15m=arrow.get(time_max_ssh_15m).to(timezone),
        residual=residual,
        max_ssh_residual=max_ssh_residual,
        wind_4h_avg=wind_4h_avg,
        ttide=ttide,
        bathy=bathy,
    )
Пример #5
0
def combine_files(files, var, kss, jss, iss):
    """Returns the value of the variable entered over
    multiple files covering a certain period of time at
    a set of grid coordinates.

    :arg files: Multiple result files in chronological order.
    :type files: list

    :arg var: Name of variable (sossheig = sea surface height,
                      vosaline = salinity, votemper = temperature,
                      vozocrtx = Velocity U-component,
                      vomecrty = Velocity V-component).
    :type var: string

    :arg kss: list of model depth levels (<=39)
    'None' if depth is not applicable (example sea surface height).
    :type kss: integer or string

    :arg jss: list of (y) indices of location (<=897).
    :type jss:  list of integers

    :arg iss: list of (x) indices of location (<=397).
    :type iss: list of integers

    :returns: var_ary, time - array of model results and time.
    """

    time = np.array([])
    var_list = []

    for f in files:
        with nc.Dataset(f) as G:
            if kss == 'None':
                try:  # for variavles with no depht like ssh
                    var_tmp = G.variables[var][..., jss, iss]
                except IndexError:  # for variables with depth
                    var_tmp = G.variables[var][:, :, jss, iss]
            else:
                var_tmp = G.variables[var][..., kss, jss, iss]

            var_list.append(var_tmp)
            t = nc_tools.timestamp(G, np.arange(var_tmp.shape[0]))
            try:
                for ind in range(len(t)):
                    t[ind] = t[ind].datetime
            except TypeError:
                t = t.datetime
            time = np.append(time, t)

    var_ary = np.concatenate(var_list, axis=0)
    return var_ary, time
Пример #6
0
def get_model_time_variables(grid_T):
    """Return start time, end time, and the time counter values from a
    NEMO tracer results dataset.

    :arg grid_T: Tracer results dataset from NEMO.
    :type grid_T: :py:class:`netCDF4.Dataset`

    :returns: dataset start time, dataset end time,
              and array of output times all as datetime objects.
    """
    time = nc_tools.timestamp(grid_T,
                              range(grid_T.variables["time_counter"].size))
    time = np.array([t.datetime for t in time])
    return time[0], time[-1], time
Пример #7
0
def test_timestamp_value_list(nc_dataset):
    """timestamp returns expected list of Arrow instances
    """
    nc_dataset.createDimension('time_counter')
    time_counter = nc_dataset.createVariable('time_counter', float,
                                             ('time_counter', ))
    time_counter.time_origin = '2002-OCT-26 00:00:00'
    time_counter[:] = np.array([0.5, 1.5]) * 60 * 60
    timestamp = nc_tools.timestamp(nc_dataset, (0, 1))
    expected = [
        arrow.get(2002, 10, 26, 0, 30, 0),
        arrow.get(2002, 10, 26, 1, 30, 0),
    ]
    assert timestamp == expected
Пример #8
0
def _prep_plot_data(grid_T_hr):
    si, ei = 200, 610
    sj, ej = 20, 370
    lons = grid_T_hr.variables["nav_lon"][si:ei, sj:ej]
    lats = grid_T_hr.variables["nav_lat"][si:ei, sj:ej]
    model_depth_level = 1  # 1.5 m
    ## TODO: model time step for salinity contour map should be calculated from
    ##       ferry route time
    model_time_step = 3  # 02:30 UTC
    sal_hr = grid_T_hr.variables["vosaline"]
    ## TODO: Use mesh mask instead of 0 for masking
    sal_masked = np.ma.masked_values(
        sal_hr[model_time_step, model_depth_level, si:ei, sj:ej], 0)
    timestamped_sal = namedtuple("timestamped_sal", "salinity, timestamp")
    sal_model = timestamped_sal(teos_tools.psu_teos(sal_masked),
                                nc_tools.timestamp(grid_T_hr, model_time_step))
    return lons, lats, sal_model, None
Пример #9
0
def plot_vel_NE_gridded(station, grid, figsize=(14, 10)):
    """Plots the hourly averaged North/South and East/West velocities at a chosen
    VENUS node station using data that is calculated every 15 minutes.

    :arg station: Name of the station ('East' or 'Central')
    :type station: string

    :arg grid: Quarter-hourly velocity and tracer results dataset from NEMO.
    :type grid: :class:`netCDF4.Dataset`

    :arg figsize: Figure size (width, height) in inches or 'default'.
    :type figsize: 2-tuple

    :returns: matplotlib figure object instance (fig).
    """
    u_u = grid.variables['vozocrtx']
    v_v = grid.variables['vomecrty']
    w_w = grid.variables['vovecrtz']
    dep_t = grid.variables['depthv']
    dep_w = grid.variables['depthw']
    t = grid.variables['time_counter']
    dt = (t[1]-t[0])/3600.
    maxt = dt*t.shape[0]
    t_axis = np.arange(0, maxt, dt)

    u_E, v_N = unstag_rot(u_u, v_v)
    u_E = u_E[..., 0, 0]
    v_N = v_N[..., 0, 0]

    fig, (axu, axv, axw) = plt.subplots(3, 1, figsize=figsize, sharex=True)
    fig.patch.set_facecolor('#2B3E50')

    max_array = np.maximum(abs(v_N), abs(u_E))
    max_speed = np.amax(max_array)
    vmax = max_speed
    vmin = - max_speed
    step = 0.03

    # viz_tools.set_aspect(axu)
    timestamp = nc_tools.timestamp(grid, 0)
    cmap = plt.get_cmap('jet')
    dep_s = SITES['VENUS'][station]['depth']

    axu.invert_yaxis()
    mesh = axu.contourf(
        t_axis,
        dep_t[:],
        u_E.transpose(),
        np.arange(vmin, vmax, step), cmap=cmap)
    cbar = fig.colorbar(mesh, ax=axu)
    axu.set_ylim([dep_s, 0])
    axu.set_xlim([0, maxt])
    axu.set_ylabel('Depth [m]', **axis_font)
    figures.axis_colors(axu, 'white')
    axu.set_title(
        f'East/West Velocities at VENUS {station} on '
        f'{timestamp.format("DD-MMM-YYYY")}', **title_font)
    plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w')
    cbar.set_label('[m/s]', **axis_font)

    axv.invert_yaxis()
    mesh = axv.contourf(
        t_axis,
        dep_t[:],
        v_N.transpose(),
        np.arange(vmin, vmax, step),
        cmap=cmap)
    cbar = fig.colorbar(mesh, ax=axv)
    axv.set_ylim([dep_s, 0])
    axv.set_xlim([0, maxt])
    axv.set_ylabel('Depth [m]', **axis_font)
    figures.axis_colors(axv, 'white')
    axv.set_title(
        f'North/South Velocities at VENUS {station} on '
        f'{timestamp.format("DD-MMM-YYYY")}', **title_font)
    plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w')
    cbar.set_label('[m/s]', **axis_font)

    axw.invert_yaxis()
    mesh = axw.contourf(
        t_axis, dep_w[:],
        w_w[:, :, 1, 1].transpose(),
        np.arange(vmin/70, vmax/70, step/80),
        cmap=cmap)
    cbar = fig.colorbar(mesh, ax=axw)
    axw.set_ylim([dep_s, 0])
    axw.set_xlim([0, maxt])
    axw.set_xlabel('Time [h]', **axis_font)
    axw.set_ylabel('Depth [m]', **axis_font)
    figures.axis_colors(axw, 'white')
    axw.set_title(
        f'Vertical Velocities at VENUS {station} on '
        f'{timestamp.format("DD-MMM-YYYY")}', **title_font)
    plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='w')
    cbar.set_label('[m/s]', **axis_font)

    return fig
def _prep_plot_data(
    place, grid_T_hr, dev_grid_T_hr, timezone, mesh_mask, dev_mesh_mask,
):
    try:
        j, i = places.PLACES[place]['NEMO grid ji']
    except KeyError as e:
        raise KeyError(
            'place name or info key not found in '
            'salishsea_tools.places.PLACES: {e}')
    node_depth = places.PLACES[place]['depth']
    station_code = places.PLACES[place]['ONC stationCode']
    # Production model results
    model_time = nc_tools.timestamp(
        grid_T_hr, range(grid_T_hr.variables['time_counter'].size))
    try:
        # NEMO-3.4 mesh mask
        gdept = mesh_mask.variables['gdept']
    except KeyError:
        # NEMO-3.6 mesh mask
        gdept = mesh_mask.variables['gdept_0']
    tracer_depths = gdept[..., j, i][0]
    tracer_mask = mesh_mask.variables['tmask'][..., j, i][0]
    try:
        # NEMO-3.4 mesh mask
        gdepw = mesh_mask.variables['gdepw']
    except KeyError:
        # NEMO-3.6 mesh mask
        gdepw = mesh_mask.variables['gdepw_0']
    w_depths = gdepw[..., j, i][0]
    salinity_profiles = grid_T_hr.variables['vosaline'][..., j, i]
    temperature_profiles = grid_T_hr.variables['votemper'][..., j, i]
    model_salinity_ts = _calc_results_time_series(
        salinity_profiles, model_time, node_depth, timezone,
        tracer_depths, tracer_mask, w_depths)
    model_temperature_ts = _calc_results_time_series(
        temperature_profiles, model_time, node_depth, timezone,
        tracer_depths, tracer_mask, w_depths)
    # Development model results
    dev_model_time = nc_tools.timestamp(
        dev_grid_T_hr, range(grid_T_hr.variables['time_counter'].size))
    tracer_depths = dev_mesh_mask.variables['gdept_0'][..., j, i][0]
    tracer_mask = dev_mesh_mask.variables['tmask'][..., j, i][0]
    w_depths = dev_mesh_mask.variables['gdepw_0'][..., j, i][0]
    salinity_profiles = dev_grid_T_hr.variables['vosaline'][..., j, i]
    temperature_profiles = dev_grid_T_hr.variables['votemper'][..., j, i]
    dev_model_salinity_ts = _calc_results_time_series(
        salinity_profiles, dev_model_time, node_depth, timezone,
        tracer_depths, tracer_mask, w_depths)
    dev_model_temperature_ts = _calc_results_time_series(
        temperature_profiles, dev_model_time, node_depth, timezone,
        tracer_depths, tracer_mask, w_depths)
    # Observations
    onc_data = data_tools.get_onc_data(
        'scalardata', 'getByStation', os.environ['ONC_USER_TOKEN'],
        station=station_code,
        deviceCategory='CTD', sensors='salinity,temperature',
        dateFrom=data_tools.onc_datetime(model_time[0], 'utc'),
        dateTo=data_tools.onc_datetime(model_time[-1], 'utc'))
    plot_data = namedtuple(
        'PlotData',
        'model_salinity_ts, model_temperature_ts, '
        'dev_model_salinity_ts, dev_model_temperature_ts, '
        'ctd_data')
    return plot_data(
        model_salinity_ts=model_salinity_ts,
        model_temperature_ts=model_temperature_ts,
        dev_model_salinity_ts=dev_model_salinity_ts,
        dev_model_temperature_ts=dev_model_temperature_ts,
        ctd_data=data_tools.onc_json_to_dataset(onc_data),
    )
Пример #11
0
def _prep_plot_data(
    place, grid_T_hr, dev_grid_T_hr, timezone, mesh_mask, dev_mesh_mask
):
    try:
        j, i = places.PLACES[place]["NEMO grid ji"]
    except KeyError as e:
        raise KeyError(
            "place name or info key not found in salishsea_tools.places.PLACES: {e}"
        )
    node_depth = places.PLACES[place]["depth"]
    station_code = places.PLACES[place]["ONC stationCode"]
    # Production model results
    model_time = nc_tools.timestamp(
        grid_T_hr, range(grid_T_hr.variables["time_counter"].size)
    )
    try:
        # NEMO-3.4 mesh mask
        gdept = mesh_mask.variables["gdept"]
    except KeyError:
        # NEMO-3.6 mesh mask
        gdept = mesh_mask.variables["gdept_0"]
    tracer_depths = gdept[..., j, i][0]
    tracer_mask = mesh_mask.variables["tmask"][..., j, i][0]
    try:
        # NEMO-3.4 mesh mask
        gdepw = mesh_mask.variables["gdepw"]
    except KeyError:
        # NEMO-3.6 mesh mask
        gdepw = mesh_mask.variables["gdepw_0"]
    w_depths = gdepw[..., j, i][0]
    salinity_profiles = grid_T_hr.variables["vosaline"][..., j, i]
    temperature_profiles = grid_T_hr.variables["votemper"][..., j, i]
    model_salinity_ts = _calc_results_time_series(
        salinity_profiles,
        model_time,
        node_depth,
        timezone,
        tracer_depths,
        tracer_mask,
        w_depths,
    )
    model_temperature_ts = _calc_results_time_series(
        temperature_profiles,
        model_time,
        node_depth,
        timezone,
        tracer_depths,
        tracer_mask,
        w_depths,
    )
    # Development model results
    dev_model_time = nc_tools.timestamp(
        dev_grid_T_hr, range(grid_T_hr.variables["time_counter"].size)
    )
    tracer_depths = dev_mesh_mask.variables["gdept_0"][..., j, i][0]
    tracer_mask = dev_mesh_mask.variables["tmask"][..., j, i][0]
    w_depths = dev_mesh_mask.variables["gdepw_0"][..., j, i][0]
    salinity_profiles = dev_grid_T_hr.variables["vosaline"][..., j, i]
    temperature_profiles = dev_grid_T_hr.variables["votemper"][..., j, i]
    dev_model_salinity_ts = _calc_results_time_series(
        salinity_profiles,
        dev_model_time,
        node_depth,
        timezone,
        tracer_depths,
        tracer_mask,
        w_depths,
    )
    dev_model_temperature_ts = _calc_results_time_series(
        temperature_profiles,
        dev_model_time,
        node_depth,
        timezone,
        tracer_depths,
        tracer_mask,
        w_depths,
    )
    # Observations
    onc_data = data_tools.get_onc_data(
        "scalardata",
        "getByStation",
        os.environ["ONC_USER_TOKEN"],
        station=station_code,
        deviceCategory="CTD",
        sensors="salinity,temperature",
        dateFrom=data_tools.onc_datetime(model_time[0], "utc"),
        dateTo=data_tools.onc_datetime(model_time[-1], "utc"),
    )
    plot_data = namedtuple(
        "PlotData",
        "model_salinity_ts, model_temperature_ts, "
        "dev_model_salinity_ts, dev_model_temperature_ts, "
        "ctd_data",
    )
    return plot_data(
        model_salinity_ts=model_salinity_ts,
        model_temperature_ts=model_temperature_ts,
        dev_model_salinity_ts=dev_model_salinity_ts,
        dev_model_temperature_ts=dev_model_temperature_ts,
        ctd_data=data_tools.onc_json_to_dataset(onc_data),
    )