Пример #1
0
    def run(self, options):
        labeler = None if options.labeler is None else labelers.registry[
            options.labeler]

        # Wait to instantiate the corpus writer until we know the dimensionality of the descriptors we'll be writing
        writer = None
        log.info('Writing SAM corpus to %s' % options.dest_corpus)

        filenames = open(options.file_list).readlines()
        for i, filename in enumerate(filenames):
            filename = filename.strip()
            log.info('Processing image %d/%d' % (i + 1, len(filenames)))

            descriptor = color_gist(
                filename) if options.color else grayscale_gist(filename)
            if writer is None:
                dim = descriptor.size
                writer = CorpusWriter(options.dest_corpus,
                                      data_series='sam',
                                      dim=dim)

            normalized_descriptor = l2_normalize(descriptor)
            doc_label = labeler(filename) if labeler else None
            writer.write_doc(ascolvector(normalized_descriptor),
                             name=filename,
                             label=doc_label)

        writer.close()
Пример #2
0
    def run(self, options):
        labeler = labelers.registry[options.labeler]

        # Wait to instantiate the corpus writer until we know the dimensionality of the descriptors we'll be writing
        filenames = open(options.file_list).readlines()
        labels = [labeler(each) for each in filenames]
        class_list = sorted(set(labels))

        writer = ArffWriter(options.dest, class_list=class_list)
        log.info('Writing GIST data to %s' % options.dest)

        for i, (filename, label) in enumerate(izip(filenames, labels)):
            filename = filename.strip()
            log.info('Processing image %d/%d' % (i+1, len(filenames)))

            descriptor = color_gist(filename) if options.color else grayscale_gist(filename)

            if options.normalize:
                descriptor = l2_normalize(descriptor)
            writer.write_example(descriptor, label)
        writer.close()
Пример #3
0
    def run(self, options):
        labeler = labelers.registry[options.labeler]

        # Wait to instantiate the corpus writer until we know the dimensionality of the descriptors we'll be writing
        filenames = open(options.file_list).readlines()
        labels = [labeler(each) for each in filenames]
        class_list = sorted(set(labels))

        writer = ArffWriter(options.dest, class_list=class_list)
        log.info('Writing GIST data to %s' % options.dest)

        for i, (filename, label) in enumerate(izip(filenames, labels)):
            filename = filename.strip()
            log.info('Processing image %d/%d' % (i + 1, len(filenames)))

            descriptor = color_gist(
                filename) if options.color else grayscale_gist(filename)

            if options.normalize:
                descriptor = l2_normalize(descriptor)
            writer.write_example(descriptor, label)
        writer.close()
Пример #4
0
    def run(self, options):
        labeler = None if options.labeler is None else labelers.registry[options.labeler]

        # Wait to instantiate the corpus writer until we know the dimensionality of the descriptors we'll be writing
        writer = None
        log.info('Writing SAM corpus to %s' % options.dest_corpus)

        filenames = open(options.file_list).readlines()
        for i, filename in enumerate(filenames):
            filename = filename.strip()
            log.info('Processing image %d/%d' % (i+1, len(filenames)))

            descriptor = color_gist(filename) if options.color else grayscale_gist(filename)
            if writer is None:
                dim = descriptor.size
                writer = CorpusWriter(options.dest_corpus, data_series='sam', dim=dim)

            normalized_descriptor = l2_normalize(descriptor)
            doc_label = labeler(filename) if labeler else None
            writer.write_doc(ascolvector(normalized_descriptor), name=filename, label=doc_label)

        writer.close()