import matplotlib.pyplot as plt import sys, os from collections import OrderedDict from itertools import product os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from sample_maker import create_pos, create_neg #from sc import sc from sc_freeze import sc input_shape = (8, 8) batch_size = 1 ch = 3 neg = create_neg(input_shape)[None, :, :, :] pos = create_pos(input_shape)[None, :, :, :] inputs = tf.placeholder(tf.float32, shape=(batch_size, input_shape[0], input_shape[1], 1)) modify = [] for i in range(1, 4): modify.append('conv%d' % i) logits, net, activations, modifys = sc(inputs, modify=modify) print modifys modifyv = {} for i in range(1, 4): name = 'conv%d' % i print name modifyv[name] = np.ones(activations[name].shape) with tf.Session() as sess:
batch_size = 50 input_shape = (8, 8) inputs = tf.placeholder(tf.float32, shape=(batch_size, input_shape[0], input_shape[1], 1)) labels = tf.placeholder(tf.float32, shape=(batch_size, None, None, None)) logits, net, activations = sc(inputs) sess = tf.InteractiveSession() saver = tf.train.Saver() #sess.run(tf.global_variables_initializer()) #saver.restore(sess,'ckpts_freeze/20000.ckpt') neg = create_neg(input_shape)[:, :, :] pos = create_pos(input_shape)[:, :, :] poss = np.array([pos for _ in xrange(batch_size)]) negs = np.array([neg for _ in xrange(batch_size)]) trainingv = ['conv%d/weights:0' % j for j in xrange(1, 4)] trr = [tv for tv in tf.trainable_variables() if tv.name in trainingv] labelss = {} for j in range(1, 4): labelss['conv%d' % j] = tf.placeholder( tf.float32, shape=activations['conv%d' % j].get_shape().as_list()) loss = tf.losses.mean_squared_error(labelss['conv%d' % j], activations['conv%d' % j], weights=100. / j**2) tf.losses.add_loss(loss) total_loss = tf.losses.get_total_loss() #loss = tf.losses.softmax_cross_entropy(labels,activations['conv%d'%j],weights=10)