def __init__(self, args, test_dataloader): self.args = args self.test_dataloader = test_dataloader self.bce_loss = nn.BCELoss() self.mse_loss = nn.MSELoss() self.ce_loss = nn.CrossEntropyLoss() self.sampler = sampler.AdversarySampler(self.args.budget)
def __init__(self, args, test_dataloader): self.args = args self.test_dataloader = test_dataloader self.model_path = self.args.out_path self.bce_loss = nn.BCELoss() self.mse_loss = nn.MSELoss() self.ce_loss = nn.CrossEntropyLoss() # self.base_name = "discriminator_probs_" # Only in the discriminator probabilties changes, no backward vae # self.base_name = "vae_back_dis_probs_" # Vae backward done and discriminator probabilities only self.base_name = "m2_model" self.sampler = sampler.AdversarySampler(self.args.budget) if args.tensorboard is True: tb_path = os.path.join(args.out_path, 'tb_logs') if not os.path.exists(tb_path): os.mkdir(tb_path) self.writer_train = SummaryWriter(os.path.join(tb_path, 'summary_train')) self.writer_val = SummaryWriter(os.path.join(tb_path, 'summary_val'))
def __init__(self, args, test_dataloader): self.args = args self.test_dataloader = test_dataloader self.bce_loss = nn.BCELoss() self.mse_loss = nn.MSELoss() self.ce_loss = nn.CrossEntropyLoss() self.sampling_method = args.sampling_method if self.sampling_method == "random": self.sampler = sampler.RandomSampler(self.args.budget) elif self.sampling_method == "adversary": self.sampler = sampler.AdversarySampler(self.args.budget) elif self.sampling_method == "uncertainty": self.sampler = sampler.UncertaintySampler(self.args.budget) elif self.sampling_method == "expected_error": self.sampler = sampler.EESampler(self.args.budget) elif self.sampling_method == "adversary_1c": self.sample = sampler.AdversarySamplerSingleClass(self.args.budget) else: raise Exception("No valid sampling method provideds")