Пример #1
0
    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            # multiclass nms
            result = boxlist_ml_nms(boxlists[i], self.nms_thresh)
            number_of_detections = len(result)

            # Limit to max_per_image detections **over all classes**
            if number_of_detections > self.fpn_post_nms_top_n > 0:
                cls_scores = result.get_field("scores")
                image_thresh, _ = torch.kthvalue(
                    cls_scores.cpu(),
                    number_of_detections - self.fpn_post_nms_top_n + 1)
                keep = cls_scores >= image_thresh.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]
            if self.score_voting:
                boxes_al = boxlists[i].bbox
                boxlist = boxlists[i]
                labels = boxlists[i].get_field("labels")
                scores = boxlists[i].get_field("scores")
                sigma = 0.025
                result_labels = result.get_field("labels")
                for j in range(1, self.num_classes):
                    inds = (labels == j).nonzero().view(-1)
                    scores_j = scores[inds]
                    boxes_j = boxes_al[inds, :].view(-1, 4)
                    boxlist_for_class = BoxList(boxes_j,
                                                boxlist.size,
                                                mode="xyxy")
                    result_inds = (result_labels == j).nonzero().view(-1)
                    boxlist_for_class_nmsed = result[result_inds]
                    ious = boxlist_iou(boxlist_for_class_nmsed,
                                       boxlist_for_class)
                    voted_boxes = []
                    for bi in range(len(boxlist_for_class_nmsed)):
                        cur_ious = ious[bi]
                        pos_inds = (cur_ious > 0.01).nonzero().squeeze(1)
                        pos_ious = cur_ious[pos_inds]
                        pos_boxes = boxlist_for_class.bbox[pos_inds]
                        pos_scores = scores_j[pos_inds]
                        pis = (torch.exp(-(1 - pos_ious)**2 / sigma) *
                               pos_scores).unsqueeze(1)
                        voted_box = torch.sum(pos_boxes * pis,
                                              dim=0) / torch.sum(pis, dim=0)
                        voted_boxes.append(voted_box.unsqueeze(0))
                    if voted_boxes:
                        voted_boxes = torch.cat(voted_boxes, dim=0)
                        boxlist_for_class_nmsed_ = BoxList(
                            voted_boxes,
                            boxlist_for_class_nmsed.size,
                            mode="xyxy")
                        boxlist_for_class_nmsed_.add_field(
                            "scores",
                            boxlist_for_class_nmsed.get_field('scores'))
                        result.bbox[
                            result_inds] = boxlist_for_class_nmsed_.bbox
            results.append(result)
        return results
Пример #2
0
    def __getitem__(self, idx):
        img, anno = super(COCODataset, self).__getitem__(idx)

        # filter crowd annotations
        # TODO might be better to add an extra field
        anno = [obj for obj in anno if obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")

        classes = [obj["category_id"] for obj in anno]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        masks = [obj["segmentation"] for obj in anno]
        masks = SegmentationMask(masks, img.size, mode='poly')
        target.add_field("masks", masks)

        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = PersonKeypoints(keypoints, img.size)
            target.add_field("keypoints", keypoints)

        target = target.clip_to_image(remove_empty=True)

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        return img, target, idx
Пример #3
0
    def forward_for_single_feature_map(self, anchors, objectness,
                                       box_regression):
        """
        Arguments:
            anchors: list[BoxList]
            objectness: tensor of size N, A, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = objectness.device
        N, A, H, W = objectness.shape

        # put in the same format as anchors
        objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1)
        objectness = objectness.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)

        num_anchors = A * H * W

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)
        objectness, topk_idx = objectness.topk(pre_nms_top_n,
                                               dim=1,
                                               sorted=True)

        batch_idx = torch.arange(N, device=device)[:, None]
        box_regression = box_regression[batch_idx, topk_idx]

        image_shapes = [box.size for box in anchors]
        concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
        concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]

        proposals = self.box_coder.decode(box_regression.view(-1, 4),
                                          concat_anchors.view(-1, 4))

        proposals = proposals.view(N, -1, 4)

        result = []
        for proposal, score, im_shape in zip(proposals, objectness,
                                             image_shapes):
            boxlist = BoxList(proposal, im_shape, mode="xyxy")
            boxlist.add_field("objectness", score)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            boxlist = boxlist_nms(
                boxlist,
                self.nms_thresh,
                max_proposals=self.post_nms_top_n,
                score_field="objectness",
            )
            result.append(boxlist)
        return result
Пример #4
0
 def prepare_boxlist(self, boxes, scores, image_shape):
     """
     Returns BoxList from `boxes` and adds probability scores information
     as an extra field
     `boxes` has shape (#detections, 4 * #classes), where each row represents
     a list of predicted bounding boxes for each of the object classes in the
     dataset (including the background class). The detections in each row
     originate from the same object proposal.
     `scores` has shape (#detection, #classes), where each row represents a list
     of object detection confidence scores for each of the object classes in the
     dataset (including the background class). `scores[i, j]`` corresponds to the
     box at `boxes[i, j * 4:(j + 1) * 4]`.
     """
     boxes = boxes.reshape(-1, 4)
     scores = scores.reshape(-1)
     boxlist = BoxList(boxes, image_shape, mode="xyxy")
     boxlist.add_field("scores", scores)
     return boxlist
Пример #5
0
    def forward(self, x, boxes):
        """
        Arguments:
            x (Tensor): the mask logits
            boxes (list[BoxList]): bounding boxes that are used as
                reference, one for ech image

        Returns:
            results (list[BoxList]): one BoxList for each image, containing
                the extra field mask
        """
        mask_prob = x.sigmoid()

        # select masks sampling_freesponding to the predicted classes
        num_masks = x.shape[0]
        labels = [bbox.get_field("labels") for bbox in boxes]
        labels = torch.cat(labels)
        index = torch.arange(num_masks, device=labels.device)
        mask_prob = mask_prob[index, labels][:, None]

        boxes_per_image = [len(box) for box in boxes]
        mask_prob = mask_prob.split(boxes_per_image, dim=0)

        if self.masker:
            mask_prob = self.masker(mask_prob, boxes)

        results = []
        for prob, box in zip(mask_prob, boxes):
            bbox = BoxList(box.bbox, box.size, mode="xyxy")
            for field in box.fields():
                bbox.add_field(field, box.get_field(field))
            bbox.add_field("mask", prob)
            results.append(bbox)

        return results
Пример #6
0
 def forward(self, image_list, feature_maps):
     grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
     anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
     anchors = []
     for i, (image_height,
             image_width) in enumerate(image_list.image_sizes):
         anchors_in_image = []
         for anchors_per_feature_map in anchors_over_all_feature_maps:
             boxlist = BoxList(anchors_per_feature_map,
                               (image_width, image_height),
                               mode="xyxy")
             self.add_visibility_to(boxlist)
             anchors_in_image.append(boxlist)
         anchors.append(anchors_in_image)
     return anchors
Пример #7
0
    def forward_for_single_feature_map(self, box_cls, box_regression,
                                       centerness, anchors):
        N, _, H, W = box_cls.shape
        A = box_regression.size(1) // 4
        C = box_cls.size(1) // A

        # put in the same format as anchors
        box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
        box_cls = box_cls.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
        box_regression = box_regression.reshape(N, -1, 4)

        candidate_inds = box_cls > self.pre_nms_thresh
        pre_nms_top_n = candidate_inds.reshape(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        centerness = permute_and_flatten(centerness, N, A, 1, H, W)
        centerness = centerness.reshape(N, -1).sigmoid()

        # multiply the classification scores with centerness scores
        box_cls = box_cls * centerness[:, :, None]

        results = []
        for per_box_cls, per_box_regression, per_pre_nms_top_n, per_candidate_inds, per_anchors \
                in zip(box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors):

            per_box_cls = per_box_cls[per_candidate_inds]

            per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n,
                                                          sorted=False)

            per_candidate_nonzeros = per_candidate_inds.nonzero()[
                top_k_indices, :]

            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1] + 1

            detections = self.box_coder.decode(
                per_box_regression[per_box_loc, :].view(-1, 4),
                per_anchors.bbox[per_box_loc, :].view(-1, 4))

            boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", torch.sqrt(per_box_cls))
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results
Пример #8
0
def merge_result_from_multi_scales(boxlists, nms_type='nms', vote_thresh=0.65):
    num_images = len(boxlists)
    results = []
    for i in range(num_images):
        ssampling_frees = boxlists[i].get_field("ssampling_frees")
        labels = boxlists[i].get_field("labels")
        boxes = boxlists[i].bbox
        boxlist = boxlists[i]
        result = []
        # skip the background
        for j in range(1, cfg.MODEL.RETINANET.NUM_CLASSES):
            inds = (labels == j).nonzero().view(-1)

            ssampling_frees_j = ssampling_frees[inds]
            boxes_j = boxes[inds, :].view(-1, 4)
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("ssampling_frees", ssampling_frees_j)
            boxlist_for_class = boxlist_nms(
                boxlist_for_class,
                cfg.MODEL.ATSS.NMS_TH,
                ssampling_free_field="ssampling_frees",
                nms_type=nms_type,
                vote_thresh=vote_thresh)
            num_labels = len(boxlist_for_class)
            boxlist_for_class.add_field(
                "labels",
                torch.full((num_labels, ),
                           j,
                           dtype=torch.int64,
                           device=ssampling_frees.device))
            result.append(boxlist_for_class)

        result = cat_boxlist(result)
        number_of_detections = len(result)

        # Limit to max_per_image detections **over all classes**
        if number_of_detections > cfg.MODEL.ATSS.PRE_NMS_TOP_N > 0:
            cls_ssampling_frees = result.get_field("ssampling_frees")
            image_thresh, _ = torch.kthvalue(
                cls_ssampling_frees.cpu(),
                number_of_detections - cfg.MODEL.ATSS.PRE_NMS_TOP_N + 1)
            keep = cls_ssampling_frees >= image_thresh.item()
            keep = torch.nonzero(keep).squeeze(1)
            result = result[keep]
        results.append(result)
    return results
Пример #9
0
    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        results = []
        for i in range(num_images):
            scores = boxlists[i].get_field("scores")
            labels = boxlists[i].get_field("labels")
            boxes = boxlists[i].bbox
            boxlist = boxlists[i]
            result = []
            # skip the background
            for j in range(1, self.num_classes):
                inds = (labels == j).nonzero().view(-1)

                scores_j = scores[inds]
                boxes_j = boxes[inds, :].view(-1, 4)
                boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
                boxlist_for_class.add_field("scores", scores_j)
                boxlist_for_class = boxlist_nms(boxlist_for_class,
                                                self.nms_thresh,
                                                score_field="scores")
                num_labels = len(boxlist_for_class)
                boxlist_for_class.add_field(
                    "labels",
                    torch.full((num_labels, ),
                               j,
                               dtype=torch.int64,
                               device=scores.device))
                result.append(boxlist_for_class)

            result = cat_boxlist(result)
            number_of_detections = len(result)

            # Limit to max_per_image detections **over all classes**
            if number_of_detections > self.fpn_post_nms_top_n > 0:
                cls_scores = result.get_field("scores")
                image_thresh, _ = torch.kthvalue(
                    cls_scores.cpu(),
                    number_of_detections - self.fpn_post_nms_top_n + 1)
                keep = cls_scores >= image_thresh.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]
            results.append(result)
        return results
Пример #10
0
    def filter_results(self, boxlist, num_classes):
        """Returns bounding-box detection results by thresholding on scores and
        applying non-maximum suppression (NMS).
        """
        # unwrap the boxlist to avoid additional overhead.
        # if we had multi-class NMS, we could perform this directly on the boxlist
        boxes = boxlist.bbox.reshape(-1, num_classes * 4)
        scores = boxlist.get_field("scores").reshape(-1, num_classes)

        device = scores.device
        result = []
        # Apply threshold on detection probabilities and apply NMS
        # Skip j = 0, because it's the background class
        inds_all = scores > self.score_thresh
        for j in range(1, num_classes):
            inds = inds_all[:, j].nonzero().squeeze(1)
            scores_j = scores[inds, j]
            boxes_j = boxes[inds, j * 4:(j + 1) * 4]
            boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy")
            boxlist_for_class.add_field("scores", scores_j)
            boxlist_for_class = boxlist_nms(boxlist_for_class, self.nms)
            num_labels = len(boxlist_for_class)
            boxlist_for_class.add_field(
                "labels",
                torch.full((num_labels, ), j, dtype=torch.int64,
                           device=device))
            result.append(boxlist_for_class)

        result = cat_boxlist(result)
        number_of_detections = len(result)

        # Limit to max_per_image detections **over all classes**
        if number_of_detections > self.detections_per_img > 0:
            cls_scores = result.get_field("scores")
            image_thresh, _ = torch.kthvalue(
                cls_scores.cpu(),
                number_of_detections - self.detections_per_img + 1)
            keep = cls_scores >= image_thresh.item()
            keep = torch.nonzero(keep).squeeze(1)
            result = result[keep]
        return result
Пример #11
0
    def forward_for_single_feature_map(self, locations, box_cls,
                                       box_regression, centerness,
                                       image_sizes):
        """
        Arguments:
            anchors: list[BoxList]
            box_cls: tensor of size N, A * C, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        N, C, H, W = box_cls.shape

        # put in the same format as locations
        box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1)
        box_cls = box_cls.reshape(N, -1, C).sigmoid()
        box_regression = box_regression.view(N, 4, H, W).permute(0, 2, 3, 1)
        box_regression = box_regression.reshape(N, -1, 4)
        centerness = centerness.view(N, 1, H, W).permute(0, 2, 3, 1)
        centerness = centerness.reshape(N, -1).sigmoid()

        candidate_inds = box_cls > self.pre_nms_thresh
        pre_nms_top_n = candidate_inds.reshape(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        # multiply the classification scores with centerness scores
        box_cls = box_cls * centerness[:, :, None]

        results = []
        for i in range(N):
            per_box_cls = box_cls[i]
            per_candidate_inds = candidate_inds[i]
            per_box_cls = per_box_cls[per_candidate_inds]

            per_candidate_nonzeros = per_candidate_inds.nonzero()
            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1] + 1

            per_box_regression = box_regression[i]
            per_box_regression = per_box_regression[per_box_loc]
            per_locations = locations[per_box_loc]

            per_pre_nms_top_n = pre_nms_top_n[i]

            if per_candidate_inds.sum().item() > per_pre_nms_top_n.item():
                per_box_cls, top_k_indices = \
                    per_box_cls.topk(per_pre_nms_top_n, sorted=False)
                per_class = per_class[top_k_indices]
                per_box_regression = per_box_regression[top_k_indices]
                per_locations = per_locations[top_k_indices]

            detections = torch.stack([
                per_locations[:, 0] - per_box_regression[:, 0],
                per_locations[:, 1] - per_box_regression[:, 1],
                per_locations[:, 0] + per_box_regression[:, 2],
                per_locations[:, 1] + per_box_regression[:, 3],
            ],
                                     dim=1)

            h, w = image_sizes[i]
            boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", torch.sqrt(per_box_cls))
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results
Пример #12
0
def im_detect_bbox_aug_vote(model, images, device):
    # Collect detections computed under different transformations
    boxlists_ts = []
    for _ in range(len(images)):
        boxlists_ts.append([])

    def add_preds_t(boxlists_t):
        for i, boxlist_t in enumerate(boxlists_t):
            if len(boxlists_ts[i]) == 0:
                # The first one is identity transform, no need to resize the boxlist
                boxlists_ts[i].append(boxlist_t)
            else:
                # Resize the boxlist as the first one
                boxlists_ts[i].append(boxlist_t.resize(boxlists_ts[i][0].size))

    # Compute detections for the original image (identity transform)
    boxlists_i = im_detect_bbox(model, images, cfg.INPUT.MIN_SIZE_TEST,
                                cfg.INPUT.MAX_SIZE_TEST, device)
    add_preds_t(boxlists_i)

    # Perform detection on the horizontally flipped image
    if cfg.TEST.BBOX_AUG.H_FLIP:
        boxlists_hf = im_detect_bbox_hflip(model, images,
                                           cfg.INPUT.MIN_SIZE_TEST,
                                           cfg.INPUT.MAX_SIZE_TEST, device)
        add_preds_t(boxlists_hf)

    for idx, scale in enumerate(cfg.TEST.BBOX_AUG.SCALES):
        max_size = cfg.TEST.BBOX_AUG.MAX_SIZE
        min_range = cfg.TEST.BBOX_AUG.SCALE_RANGES[idx][0]
        max_range = cfg.TEST.BBOX_AUG.SCALE_RANGES[idx][1]
        if scale < 800:
            max_size = cfg.INPUT.MAX_SIZE_TEST

        boxlists_scl = im_detect_bbox_scale(model, images, scale, max_size,
                                            device)
        boxlists_scl = remove_boxes(boxlists_scl, min_range, max_range)
        add_preds_t(boxlists_scl)

        if cfg.TEST.BBOX_AUG.SCALE_H_FLIP:
            boxlists_scl_hf = im_detect_bbox_scale(model,
                                                   images,
                                                   scale,
                                                   max_size,
                                                   device,
                                                   hflip=True)
            boxlists_scl_hf = remove_boxes(boxlists_scl_hf, min_range,
                                           max_range)
            add_preds_t(boxlists_scl_hf)

    # Merge boxlists detected by different bbox aug params
    boxlists = []
    for _, boxlist_ts in enumerate(boxlists_ts):
        bbox = torch.cat([boxlist_t.bbox for boxlist_t in boxlist_ts])
        ssampling_frees = torch.cat([
            boxlist_t.get_field('ssampling_frees') for boxlist_t in boxlist_ts
        ])
        labels = torch.cat(
            [boxlist_t.get_field('labels') for boxlist_t in boxlist_ts])
        boxlist = BoxList(bbox, boxlist_ts[0].size, boxlist_ts[0].mode)
        boxlist.add_field('ssampling_frees', ssampling_frees)
        boxlist.add_field('labels', labels)
        boxlists.append(boxlist)
    results = merge_result_from_multi_scales(boxlists,
                                             cfg.TEST.BBOX_AUG.MERGE_TYPE,
                                             cfg.TEST.BBOX_AUG.VOTE_TH)
    return results
Пример #13
0
def im_detect_bbox_aug(model, images, device):
    # Collect detections computed under different transformations
    boxlists_ts = []
    for _ in range(len(images)):
        boxlists_ts.append([])

    def add_preds_t(boxlists_t):
        for i, boxlist_t in enumerate(boxlists_t):
            if len(boxlists_ts[i]) == 0:
                # The first one is identity transform, no need to resize the boxlist
                boxlists_ts[i].append(boxlist_t)
            else:
                # Resize the boxlist as the first one
                boxlists_ts[i].append(boxlist_t.resize(boxlists_ts[i][0].size))

    # Compute detections for the original image (identity transform)
    boxlists_i = im_detect_bbox(model, images, cfg.INPUT.MIN_SIZE_TEST,
                                cfg.INPUT.MAX_SIZE_TEST, device)
    add_preds_t(boxlists_i)

    # Perform detection on the horizontally flipped image
    if cfg.TEST.BBOX_AUG.H_FLIP:
        boxlists_hf = im_detect_bbox_hflip(model, images,
                                           cfg.INPUT.MIN_SIZE_TEST,
                                           cfg.INPUT.MAX_SIZE_TEST, device)
        add_preds_t(boxlists_hf)

    # Compute detections at different scales
    for scale in cfg.TEST.BBOX_AUG.SCALES:
        max_size = cfg.TEST.BBOX_AUG.MAX_SIZE
        boxlists_scl = im_detect_bbox_scale(model, images, scale, max_size,
                                            device)
        add_preds_t(boxlists_scl)

        if cfg.TEST.BBOX_AUG.SCALE_H_FLIP:
            boxlists_scl_hf = im_detect_bbox_scale(model,
                                                   images,
                                                   scale,
                                                   max_size,
                                                   device,
                                                   hflip=True)
            add_preds_t(boxlists_scl_hf)

    # Merge boxlists detected by different bbox aug params
    boxlists = []
    for i, boxlist_ts in enumerate(boxlists_ts):
        bbox = torch.cat([boxlist_t.bbox for boxlist_t in boxlist_ts])
        ssampling_frees = torch.cat([
            boxlist_t.get_field('ssampling_frees') for boxlist_t in boxlist_ts
        ])
        labels = torch.cat(
            [boxlist_t.get_field('labels') for boxlist_t in boxlist_ts])
        boxlist = BoxList(bbox, boxlist_ts[0].size, boxlist_ts[0].mode)
        boxlist.add_field('ssampling_frees', ssampling_frees)
        boxlist.add_field('labels', labels)
        boxlists.append(boxlist)

    # Apply NMS and limit the final detections
    post_processor = make_fcos_postprocessor(cfg)
    results = post_processor.select_over_all_levels(boxlists)

    return results
Пример #14
0
def evaluate_box_proposals(predictions,
                           dataset,
                           thresholds=None,
                           area="all",
                           limit=None):
    """Evaluate detection proposal recall metrics. This function is a much
    faster alternative to the official COCO API recall evaluation code. However,
    it produces slightly different results.
    """
    # Record max overlap value for each gt box
    # Return vector of overlap values
    areas = {
        "all": 0,
        "small": 1,
        "medium": 2,
        "large": 3,
        "96-128": 4,
        "128-256": 5,
        "256-512": 6,
        "512-inf": 7,
    }
    area_ranges = [
        [0**2, 1e5**2],  # all
        [0**2, 32**2],  # small
        [32**2, 96**2],  # medium
        [96**2, 1e5**2],  # large
        [96**2, 128**2],  # 96-128
        [128**2, 256**2],  # 128-256
        [256**2, 512**2],  # 256-512
        [512**2, 1e5**2],
    ]  # 512-inf
    assert area in areas, "Unknown area range: {}".format(area)
    area_range = area_ranges[areas[area]]
    gt_overlaps = []
    num_pos = 0

    for image_id, prediction in enumerate(predictions):
        original_id = dataset.id_to_img_map[image_id]

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))

        # sort predictions in descending order
        # TODO maybe remove this and make it explicit in the documentation
        inds = prediction.get_field("objectness").sort(descending=True)[1]
        prediction = prediction[inds]

        ann_ids = dataset.coco.getAnnIds(imgIds=original_id)
        anno = dataset.coco.loadAnns(ann_ids)
        gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0]
        gt_boxes = torch.as_tensor(gt_boxes).reshape(
            -1, 4)  # guard against no boxes
        gt_boxes = BoxList(gt_boxes, (image_width, image_height),
                           mode="xywh").convert("xyxy")
        gt_areas = torch.as_tensor(
            [obj["area"] for obj in anno if obj["iscrowd"] == 0])

        if len(gt_boxes) == 0:
            continue

        valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <=
                                                       area_range[1])
        gt_boxes = gt_boxes[valid_gt_inds]

        num_pos += len(gt_boxes)

        if len(gt_boxes) == 0:
            continue

        if len(prediction) == 0:
            continue

        if limit is not None and len(prediction) > limit:
            prediction = prediction[:limit]

        overlaps = boxlist_iou(prediction, gt_boxes)

        _gt_overlaps = torch.zeros(len(gt_boxes))
        for j in range(min(len(prediction), len(gt_boxes))):
            # find which proposal box maximally covers each gt box
            # and get the iou amount of coverage for each gt box
            max_overlaps, argmax_overlaps = overlaps.max(dim=0)

            # find which gt box is 'best' covered (i.e. 'best' = most iou)
            gt_ovr, gt_ind = max_overlaps.max(dim=0)
            assert gt_ovr >= 0
            # find the proposal box that covers the best covered gt box
            box_ind = argmax_overlaps[gt_ind]
            # record the iou coverage of this gt box
            _gt_overlaps[j] = overlaps[box_ind, gt_ind]
            assert _gt_overlaps[j] == gt_ovr
            # mark the proposal box and the gt box as used
            overlaps[box_ind, :] = -1
            overlaps[:, gt_ind] = -1

        # append recorded iou coverage level
        gt_overlaps.append(_gt_overlaps)
    gt_overlaps = torch.cat(gt_overlaps, dim=0)
    gt_overlaps, _ = torch.sort(gt_overlaps)

    if thresholds is None:
        step = 0.05
        thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32)
    recalls = torch.zeros_like(thresholds)
    # compute recall for each iou threshold
    for i, t in enumerate(thresholds):
        recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos)
    # ar = 2 * np.trapz(recalls, thresholds)
    ar = recalls.mean()
    return {
        "ar": ar,
        "recalls": recalls,
        "thresholds": thresholds,
        "gt_overlaps": gt_overlaps,
        "num_pos": num_pos,
    }
Пример #15
0
    def forward_for_single_feature_map(self, anchors, box_cls, box_regression):
        """
        Arguments:
            anchors: list[BoxList]
            box_cls: tensor of size N, A * C, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = box_cls.device
        N, _, H, W = box_cls.shape
        A = box_regression.size(1) // 4
        C = box_cls.size(1) // A

        # put in the same format as anchors
        box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
        box_cls = box_cls.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
        box_regression = box_regression.reshape(N, -1, 4)

        num_anchors = A * H * W

        candidate_inds = box_cls > self.pre_nms_thresh

        pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        results = []
        for per_box_cls, per_box_regression, per_pre_nms_top_n, \
        per_candidate_inds, per_anchors in zip(
            box_cls,
            box_regression,
            pre_nms_top_n,
            candidate_inds,
            anchors):

            # Sort and select TopN
            # TODO most of this can be made out of the loop for
            # all images.
            # TODO:Yang: Not easy to do. Because the numbers of detections are
            # different in each image. Therefore, this part needs to be done
            # per image.
            per_box_cls = per_box_cls[per_candidate_inds]

            per_box_cls, top_k_indices = \
                    per_box_cls.topk(per_pre_nms_top_n, sorted=False)

            per_candidate_nonzeros = \
                    per_candidate_inds.nonzero()[top_k_indices, :]

            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1]
            per_class += 1

            detections = self.box_coder.decode(
                per_box_regression[per_box_loc, :].view(-1, 4),
                per_anchors.bbox[per_box_loc, :].view(-1, 4))

            boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", per_box_cls)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results