Пример #1
0
    def testComputeKClusterBound2(self):
        # Try strange case where bound is less than continuous solution
        # ValueError: Bound is smaller than real solution: 127.7443918 29.6138874353

        U = numpy.load("/home/dhanjalc/Documents/Postdoc/Code/APGL/repo/exp/sandbox/badMatrix.npy")
        delta = numpy.load("/home/dhanjalc/Documents/Postdoc/Code/APGL/repo/exp/sandbox/badDelta.npy")
        k = 3

        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)

        X, a, Y = numpy.linalg.svd(U)
        a = numpy.flipud(numpy.sort(a))

        self.assertTrue(obj > 127.7443918)
Пример #2
0
    def testComputeKClusterBound2(self):
        #Try strange case where bound is less than continuous solution
        #ValueError: Bound is smaller than real solution: 127.7443918 29.6138874353

        U = numpy.load(
            "/home/dhanjalc/Documents/Postdoc/Code/APGL/repo/exp/sandbox/badMatrix.npy"
        )
        delta = numpy.load(
            "/home/dhanjalc/Documents/Postdoc/Code/APGL/repo/exp/sandbox/badDelta.npy"
        )
        k = 3

        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)

        X, a, Y = numpy.linalg.svd(U)
        a = numpy.flipud(numpy.sort(a))

        self.assertTrue(obj > 127.7443918)
Пример #3
0
    def testComputeKClusterBound(self):
        numExamples = 100
        numFeatures = 2

        #Test some 2 cluster examples
        for i in range(50):
            V = numpy.random.rand(numExamples, numFeatures)

            numCluster1 = numpy.random.randint(5, numExamples)

            V[0:numCluster1, :] += numpy.random.randn()
            U = V - numpy.mean(V)
            delta = numpy.linalg.norm(U) * 0.1

            k = 2
            obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
            obj2, bestSigma2 = ClusterBound.compute2ClusterBound(U, delta)

            self.assertAlmostEquals(obj, obj2)

        #Now use more clusters
        numExamples = 30
        numFeatures = 5

        V = numpy.zeros((numExamples, numFeatures))
        V[0:10, :] = numpy.random.randn(10, numFeatures) + numpy.array(
            [1, 2, -1, 5, -4])
        V[10:20, :] = numpy.random.randn(10, numFeatures) + numpy.array(
            [1, 1, -1, 5, -4])
        V[20:30, :] = numpy.random.randn(10, numFeatures) + numpy.array(
            [-3, 4, -0.1, 0.5, 2])

        U = V - numpy.mean(V)
        delta = numpy.linalg.norm(U) * 0.1
        k = 4

        #In delta=0 case the sigmas are the same as the a_is
        for k in range(2, 5):
            obj, bestSigma = ClusterBound.computeKClusterBound(U, 0, k)

            X, a, Y = numpy.linalg.svd(U)
            a = numpy.flipud(numpy.sort(a))
            self.assertAlmostEquals(obj, (a[k - 1:]**2).sum(), 4)
            self.assertAlmostEquals(obj, (bestSigma[k - 1:]**2).sum(), 4)

        #delta != 0
        delta = numpy.linalg.norm(U) * 0.1
        obj, bestSigma = ClusterBound.computeKClusterBound(U, 0, k)
        self.assertAlmostEquals(obj, (bestSigma[k - 1:]**2).sum(), 4)

        #Do some random tests
        for i in range(20):
            V = numpy.zeros((numExamples, numFeatures))
            V[0:10, :] = numpy.random.randn(
                10, numFeatures) + numpy.random.rand(numFeatures)
            V[10:20, :] = numpy.random.randn(
                10, numFeatures) + numpy.random.rand(numFeatures)
            V[20:30, :] = numpy.random.randn(
                10, numFeatures) + numpy.random.rand(numFeatures)

            U = V - numpy.mean(V)
            delta = numpy.linalg.norm(U) * 0.1

            for k in range(2, 5):
                obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
                self.assertAlmostEquals(obj, (bestSigma[k - 1:]**2).sum(), 4)
                self.assertTrue((bestSigma[0:k - 1] >= bestSigma[k - 1]).all()
                                and (bestSigma[k:] <= bestSigma[k - 1]).all())

        #Try on a simple toy example for which we know the answer
        U = numpy.array([[5, 0], [0, 1]])
        delta = 1
        k = 2
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertEquals(obj, 4)
        nptst.assert_array_equal(bestSigma, numpy.array([5, 2]))

        U = numpy.array([[5, 0], [0, 1]])
        delta = 4
        k = 2
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertAlmostEquals(obj, 9)
        nptst.assert_array_almost_equal(bestSigma, numpy.array([5, 3]))

        #Now try on 3-cluster example
        U = numpy.array([[5, 0, 0], [0, 2, 0], [0, 0, 1]])
        delta = 0
        k = 3
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertEquals(obj, 1)
        nptst.assert_array_equal(bestSigma, numpy.array([5, 2, 1]))

        U = numpy.array([[5, 0, 0], [0, 2, 0], [0, 0, 1]])
        delta = 1
        k = 3
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertEquals(obj, 4)
        nptst.assert_array_equal(bestSigma, numpy.array([5, 2, 2]))

        U = numpy.array([[5, 0, 0], [0, 2, 0], [0, 0, 1]])
        delta = 2
        k = 3
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)

        #To solve this we look at sigmak(sigmak-4) + sigmak(sigmak-2) = -3
        sigmak = 3.0**(1.0 / 2.0) / 2.0 + 3.0 / 2.0
        self.assertAlmostEquals(obj, sigmak**2)
        nptst.assert_array_almost_equal(bestSigma,
                                        numpy.array([5, sigmak, sigmak]))
Пример #4
0
    def testComputeKClusterBound(self):
        numExamples = 100
        numFeatures = 2

        # Test some 2 cluster examples
        for i in range(50):
            V = numpy.random.rand(numExamples, numFeatures)

            numCluster1 = numpy.random.randint(5, numExamples)

            V[0:numCluster1, :] += numpy.random.randn()
            U = V - numpy.mean(V)
            delta = numpy.linalg.norm(U) * 0.1

            k = 2
            obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
            obj2, bestSigma2 = ClusterBound.compute2ClusterBound(U, delta)

            self.assertAlmostEquals(obj, obj2)

        # Now use more clusters
        numExamples = 30
        numFeatures = 5

        V = numpy.zeros((numExamples, numFeatures))
        V[0:10, :] = numpy.random.randn(10, numFeatures) + numpy.array([1, 2, -1, 5, -4])
        V[10:20, :] = numpy.random.randn(10, numFeatures) + numpy.array([1, 1, -1, 5, -4])
        V[20:30, :] = numpy.random.randn(10, numFeatures) + numpy.array([-3, 4, -0.1, 0.5, 2])

        U = V - numpy.mean(V)
        delta = numpy.linalg.norm(U) * 0.1
        k = 4

        # In delta=0 case the sigmas are the same as the a_is
        for k in range(2, 5):
            obj, bestSigma = ClusterBound.computeKClusterBound(U, 0, k)

            X, a, Y = numpy.linalg.svd(U)
            a = numpy.flipud(numpy.sort(a))
            self.assertAlmostEquals(obj, (a[k - 1 :] ** 2).sum(), 4)
            self.assertAlmostEquals(obj, (bestSigma[k - 1 :] ** 2).sum(), 4)

        # delta != 0
        delta = numpy.linalg.norm(U) * 0.1
        obj, bestSigma = ClusterBound.computeKClusterBound(U, 0, k)
        self.assertAlmostEquals(obj, (bestSigma[k - 1 :] ** 2).sum(), 4)

        # Do some random tests
        for i in range(20):
            V = numpy.zeros((numExamples, numFeatures))
            V[0:10, :] = numpy.random.randn(10, numFeatures) + numpy.random.rand(numFeatures)
            V[10:20, :] = numpy.random.randn(10, numFeatures) + numpy.random.rand(numFeatures)
            V[20:30, :] = numpy.random.randn(10, numFeatures) + numpy.random.rand(numFeatures)

            U = V - numpy.mean(V)
            delta = numpy.linalg.norm(U) * 0.1

            for k in range(2, 5):
                obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
                self.assertAlmostEquals(obj, (bestSigma[k - 1 :] ** 2).sum(), 4)
                self.assertTrue(
                    (bestSigma[0 : k - 1] >= bestSigma[k - 1]).all() and (bestSigma[k:] <= bestSigma[k - 1]).all()
                )

        # Try on a simple toy example for which we know the answer
        U = numpy.array([[5, 0], [0, 1]])
        delta = 1
        k = 2
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertEquals(obj, 4)
        nptst.assert_array_equal(bestSigma, numpy.array([5, 2]))

        U = numpy.array([[5, 0], [0, 1]])
        delta = 4
        k = 2
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertAlmostEquals(obj, 9)
        nptst.assert_array_almost_equal(bestSigma, numpy.array([5, 3]))

        # Now try on 3-cluster example
        U = numpy.array([[5, 0, 0], [0, 2, 0], [0, 0, 1]])
        delta = 0
        k = 3
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertEquals(obj, 1)
        nptst.assert_array_equal(bestSigma, numpy.array([5, 2, 1]))

        U = numpy.array([[5, 0, 0], [0, 2, 0], [0, 0, 1]])
        delta = 1
        k = 3
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)
        self.assertEquals(obj, 4)
        nptst.assert_array_equal(bestSigma, numpy.array([5, 2, 2]))

        U = numpy.array([[5, 0, 0], [0, 2, 0], [0, 0, 1]])
        delta = 2
        k = 3
        obj, bestSigma = ClusterBound.computeKClusterBound(U, delta, k)

        # To solve this we look at sigmak(sigmak-4) + sigmak(sigmak-2) = -3
        sigmak = 3.0 ** (1.0 / 2.0) / 2.0 + 3.0 / 2.0
        self.assertAlmostEquals(obj, sigmak ** 2)
        nptst.assert_array_almost_equal(bestSigma, numpy.array([5, sigmak, sigmak]))