Пример #1
0
    def __init__(
        self,
        name,
        env_spec,
        arch=gaussian_ff_arch,
        arch_args=None,
        min_std=1e-6,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        super(GaussianTFPolicy, self).__init__(env_spec)
        assert isinstance(env_spec.action_space, Box)

        if arch_args is None:
            arch_args = {}
        self.arch_args = arch_args
        self.name = name

        self.min_std_param = np.log(min_std)

        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        self._dist = DiagonalGaussian(action_dim)
        self.arch = arch

        with tf.variable_scope(self.name):
            self.sample_obs = tf.placeholder(tf.float32, [None, obs_dim])
            self.sample_mu, self.sample_log_std = self.arch(self.sample_obs,
                                                            env_spec=env_spec,
                                                            **self.arch_args)
Пример #2
0
    def __init__(self, env_spec, name=None, mean=0.0, log_std=1.0):
        with tf.variable_scope(name):
            assert isinstance(env_spec.action_space, Box)
            Serializable.quick_init(self, locals())

            self.action_dim = env_spec.action_space.flat_dim
            self._dist = DiagonalGaussian(self.action_dim)
            self.mean = mean * np.ones(self.action_dim)
            self.log_std = log_std * np.ones(self.action_dim)
            self.mean_tf = tf.constant(self.mean, dtype=tf.float32)
            self.log_std_tf = tf.constant(self.log_std, dtype=tf.float32)

            self.dummy_var = tf.get_variable(name='dummy',
                                             shape=self.action_dim)

            super(GaussianPolicy, self).__init__(env_spec=env_spec)
Пример #3
0
    def __init__(self,
                 name,
                 abstract_dim,
                 hidden_sizes=(32),
                 min_std=1e-6,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=None,
                 optim=tf.train.AdamOptimizer(learning_rate=0.001)):
        self.obs_dim = abstract_dim
        self.min_std = min_std
        self.distribution = DiagonalGaussian(self.obs_dim)
        with tf.variable_scope(name):
            self.net = MLP(
                name="mu_log_sigma",
                input_shape=self.obs_dim,
                output_dim=2 * self.obs_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
            )
        self.obs_var = self.net.input_layer.input_var
        self.output = L.get_output(self.net.output_layer, self.obs_var)
        self.mu, unstable_log_sigma = tf.split(self.output,
                                               [self.obs_dim, self.obs_dim], 1)
        self.log_sigma = tf.maximum(unstable_log_sigma, self.min_std)

        self.nexts = tf.placeholder(tf.float32, shape=(None, self.obs_dim))
        self.loss = -self.distribution.log_likelihood(
            self.nexts, dist_info=dict(mean=self.mu, log_stds=self.log_sigma))
        self.optimizer = optim
        self.train_op = optim.minimize(self.loss)

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.sess = tf.Session(config=config)
        self.sess.run(tf.global_variables_initializer())
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            min_std=1e-6,
            std_hidden_nonlinearity=tf.nn.tanh,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=None,
            mean_network=None,
            std_network=None,
            std_parametrization='exp'
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        with tf.variable_scope(name):

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            # create network
            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=(obs_dim,),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                )
            self._mean_network = mean_network

            l_mean = mean_network.output_layer
            obs_var = mean_network.input_layer.input_var

            if std_network is not None:
                l_std_param = std_network.output_layer
            else:
                if adaptive_std:
                    std_network = MLP(
                        name="std_network",
                        input_shape=(obs_dim,),
                        input_layer=mean_network.input_layer,
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=None,
                    )
                    l_std_param = std_network.output_layer
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    l_std_param = L.ParamLayer(
                        mean_network.input_layer,
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param

            # mean_var, log_std_var = L.get_output([l_mean, l_std_param])
            #
            # if self.min_std_param is not None:
            #     log_std_var = tf.maximum(log_std_var, np.log(min_std))
            #
            # self._mean_var, self._log_std_var = mean_var, log_std_var

            self._l_mean = l_mean
            self._l_std_param = l_std_param

            self._dist = DiagonalGaussian(action_dim)

            LayersPowered.__init__(self, [l_mean, l_std_param])
            super(GaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(mean_network.input_layer.input_var, dict())
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            self._f_dist = tensor_utils.compile_function(
                inputs=[obs_var],
                outputs=[mean_var, log_std_var],
            )
    def __init__(
        self,
        name,
        env_spec,
        hidden_sizes=(32, 32),
        learn_std=True,
        init_std=1.0,
        adaptive_std=False,
        std_share_network=False,
        std_hidden_sizes=(32, 32),
        min_std=1e-6,
        max_std=1000.0,
        std_modifier=1.0,
        std_hidden_nonlinearity=tf.nn.tanh,
        hidden_nonlinearity=tf.nn.tanh,
        output_nonlinearity=tf.identity,
        mean_network=None,
        std_network=None,
        std_parametrization='exp',
        grad_step_size=1.0,
        stop_grad=False,
        extra_input_dim=0,
        # metalearn_baseline=False,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :param grad_step_size: the step size taken in the learner's gradient update, sample uniformly if it is a range e.g. [0.1,1]
        :param stop_grad: whether or not to stop the gradient through the gradient.
        :return:
        """
        Serializable.quick_init(self, locals())
        #assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        self.action_dim = env_spec.action_space.flat_dim
        self.n_hidden = len(hidden_sizes)
        self.hidden_nonlinearity = hidden_nonlinearity
        self.output_nonlinearity = output_nonlinearity
        self.input_shape = (
            None,
            obs_dim + extra_input_dim,
        )
        self.extra_input_dim = extra_input_dim
        self.step_size = grad_step_size
        self.stop_grad = stop_grad
        # self.metalearn_baseline = metalearn_baseline
        if type(self.step_size) == list:
            raise NotImplementedError('removing this since it didnt work well')

        # create network
        if mean_network is None:
            self.all_params = self.create_MLP(  # TODO: this should not be a method of the policy! --> helper
                name="mean_network",
                output_dim=self.action_dim,
                hidden_sizes=hidden_sizes,
            )
            self.input_tensor, _ = self.forward_MLP(
                'mean_network',
                self.all_params,
                reuse=None  # Need to run this for batch norm
            )
            forward_mean = lambda x, params, is_train: self.forward_MLP(
                'mean_network',
                all_params=params,
                input_tensor=x,
                is_training=is_train)[1]
        else:
            raise NotImplementedError('Not supported.')

        if std_network is not None:
            raise NotImplementedError('Not supported.')
        else:
            if adaptive_std:
                raise NotImplementedError('Not supported.')
            else:
                if std_parametrization == 'exp':
                    init_std_param = np.log(init_std)
                elif std_parametrization == 'softplus':
                    init_std_param = np.log(np.exp(init_std) - 1)
                else:
                    raise NotImplementedError
                self.all_params['std_param'] = make_param_layer(
                    num_units=self.action_dim,
                    param=tf.constant_initializer(init_std_param),
                    name="output_std_param",
                    trainable=learn_std,
                )
                forward_std = lambda x, params: forward_param_layer(
                    x, params['std_param'])
            self.all_param_vals = None

            # unify forward mean and forward std into a single function
            self._forward = lambda obs, params, is_train: (forward_mean(
                obs, params, is_train), forward_std(obs, params))

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
                max_std_param = np.log(max_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
                max_std_param = np.log(np.exp(max_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param  # TODO: change these to min_std_param_raw
            self.max_std_param = max_std_param
            self.std_modifier = np.float64(std_modifier)
            #print("initializing max_std debug4", self.min_std_param, self.max_std_param)

            self._dist = DiagonalGaussian(self.action_dim)

            self._cached_params = {}

            super(MAMLGaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(self.input_tensor,
                                               dict(),
                                               is_training=False)
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            # pre-update policy
            self._init_f_dist = tensor_utils.compile_function(
                inputs=[self.input_tensor],
                outputs=[mean_var, log_std_var],
            )
            self._cur_f_dist = self._init_f_dist
Пример #6
0
    def __init__(self,
                 name,
                 env_spec,
                 hidden_sizes=(32, 32),
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 min_std=1e-6,
                 std_hidden_nonlinearity=tf.nn.tanh,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=None,
                 mean_network=None,
                 std_network=None,
                 std_parametrization='exp'):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        with tf.variable_scope(name):

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            # create network
            if mean_network is None:
                # returns layers(), input_layer, output_layer, input_var, output
                mean_network = self.create_MLP(
                    name="mean_network",
                    input_shape=(obs_dim, ),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                )
            else:
                raise NotImplementedError('Chelsea does not support this.')
            l_mean = mean_network[2]
            obs_var = mean_network[3]

            if std_network is not None:
                raise NotImplementedError(
                    'Contained Gaussian MLP does not support this.')
                l_std_param = std_network.output_layer
            else:
                if adaptive_std:
                    # returns layers(), input_layer, output_layer, input_var, output
                    std_network = self.create_MLP(
                        name="std_network",
                        input_shape=(obs_dim, ),
                        input_layer=mean_network[1],
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=None,
                    )
                    l_std_param = std_network[2]
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    l_std_param = L.ParamLayer(
                        mean_network[1],
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param

            self._l_mean = l_mean
            self._l_std_param = l_std_param

            self._dist = DiagonalGaussian(action_dim)

            # LayersPowered.__init__(self, [l_mean, l_std_param])
            self._output_layers = [l_mean, l_std_param]
            #self._input_layers = None
            # Parameterized.__init__(self)
            self._cached_params = {}
            #self._cached_param_dtypes = {} #self._cached_param_shapes = {} #self._cached_assign_ops = {} #self._cached_assign_placeholders = {}

            super(GaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(mean_network[3], dict())
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            def f_dist(*input_vals):
                sess = tf.get_default_session()
                return sess.run([mean_var, log_std_var],
                                feed_dict=dict(list(zip([obs_var],
                                                        input_vals))))

            self._f_dist = f_dist
Пример #7
0
    def __init__(
            self,
            name,
            input_shape,
            output_dim,
            # observation_space,
            mean_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            std_nonlinearity=None,
            normalize_inputs=True,
            normalize_outputs=True,
            subsample_factor=1.0
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If
        adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned.
        :param adaptive_std: Whether to make the std a function of the states.
        :param std_share_network: Whether to use the same network as the mean.
        :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if
        `std_share_network` is False. It defaults to the same architecture as the mean.
        :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network`
        is False. It defaults to the same non-linearity as the mean.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                if use_trust_region:
                    optimizer = PenaltyLbfgsOptimizer("optimizer")
                else:
                    optimizer = LbfgsOptimizer("optimizer")

            self._optimizer = optimizer
            self._subsample_factor = subsample_factor

            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=input_shape,
                    output_dim=output_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=None,
                )

            l_mean = mean_network.output_layer

            if adaptive_std:
                l_log_std = MLP(
                    name="log_std_network",
                    input_shape=input_shape,
                    input_var=mean_network.input_layer.input_var,
                    output_dim=output_dim,
                    hidden_sizes=std_hidden_sizes,
                    hidden_nonlinearity=std_nonlinearity,
                    output_nonlinearity=None,
                ).output_layer
            else:
                l_log_std = L.ParamLayer(
                    mean_network.input_layer,
                    num_units=output_dim,
                    param=tf.constant_initializer(np.log(init_std)),
                    name="output_log_std",
                    trainable=learn_std,
                )

            LayersPowered.__init__(self, [l_mean, l_log_std])

            xs_var = mean_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32, name="ys", shape=(None, output_dim))
            old_means_var = tf.placeholder(dtype=tf.float32, name="ys", shape=(None, output_dim))
            old_log_stds_var = tf.placeholder(dtype=tf.float32, name="old_log_stds", shape=(None, output_dim))

            x_mean_var = tf.Variable(
                np.zeros((1,) + input_shape, dtype=np.float32),
                name="x_mean",
            )
            x_std_var = tf.Variable(
                np.ones((1,) + input_shape, dtype=np.float32),
                name="x_std",
            )
            y_mean_var = tf.Variable(
                np.zeros((1, output_dim), dtype=np.float32),
                name="y_mean",
            )
            y_std_var = tf.Variable(
                np.ones((1, output_dim), dtype=np.float32),
                name="y_std",
            )

            self.x_mean_var = x_mean_var
            self.x_std_var = x_std_var
            self.y_mean_var = y_mean_var
            self.y_std_var = y_std_var
            # self.observation_space = observation_space

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var
            normalized_ys_var = (ys_var - y_mean_var) / y_std_var

            normalized_means_var = L.get_output(l_mean, {mean_network.input_layer: normalized_xs_var})
            normalized_log_stds_var = L.get_output(l_log_std, {mean_network.input_layer: normalized_xs_var})

            means_var = normalized_means_var * y_std_var + y_mean_var
            log_stds_var = normalized_log_stds_var + tf.log(y_std_var)

            normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var
            normalized_old_log_stds_var = old_log_stds_var - tf.log(y_std_var)

            dist = self._dist = DiagonalGaussian(output_dim)

            normalized_dist_info_vars = dict(mean=normalized_means_var, log_std=normalized_log_stds_var)

            mean_kl = tf.reduce_mean(dist.kl_sym(
                dict(mean=normalized_old_means_var, log_std=normalized_old_log_stds_var),
                normalized_dist_info_vars,
            ))

            loss = - tf.reduce_mean(dist.log_likelihood_sym(normalized_ys_var, normalized_dist_info_vars))

            self._f_predict = tensor_utils.compile_function([xs_var], means_var)
            self._f_pdists = tensor_utils.compile_function([xs_var], [means_var, log_stds_var])
            self._l_mean = l_mean
            self._l_log_std = l_log_std

            optimizer_args = dict(
                loss=loss,
                target=self,
                network_outputs=[normalized_means_var, normalized_log_stds_var],
            )

            if use_trust_region:
                optimizer_args["leq_constraint"] = (mean_kl, step_size)
                optimizer_args["inputs"] = [xs_var, ys_var, old_means_var, old_log_stds_var]
            else:
                optimizer_args["inputs"] = [xs_var, ys_var]

            self._optimizer.update_opt(**optimizer_args)

            self._use_trust_region = use_trust_region
            self._name = name

            self._normalize_inputs = normalize_inputs
            self._normalize_outputs = normalize_outputs
            self._mean_network = mean_network
            self._x_mean_var = x_mean_var
            self._x_std_var = x_std_var
            self._y_mean_var = y_mean_var
            self._y_std_var = y_std_var

            self.input_dim = input_shape[0]
            self.output_dim = output_dim
Пример #8
0
    def __init__(
            self,
            env,
            policy,
            baseline,
            scope=None,
            n_itr=500,
            start_itr=0,
            # Note that the number of trajectories for grad upate = batch_size
            # Defaults are 10 trajectories of length 500 for gradient update
            batch_size=100,
            max_path_length=500,
            meta_batch_size = 100,
            num_grad_updates=1,
            discount=0.99,
            gae_lambda=1,
            plot=False,
            pause_for_plot=False,
            center_adv=True,
            positive_adv=False,
            store_paths=False,
            whole_paths=True,
            fixed_horizon=False,
            sampler_cls=None,
            sampler_args=None,
            force_batch_sampler=False,
            load_policy=None,
            latent_dim=4,
            num_total_tasks=100,
            kl_weighting=0,
            kl_scheme=None,
            plottingFolder = None,
            visitationFolder = None,
            visitationFile = None,
            load_policy_vals = None,
            reset_step = 'False',
            **kwargs
    ):
        """
        :param env: Environment
        :param policy: Policy
        :type policy: Policy
        :param baseline: Baseline
        :param scope: Scope for identifying the algorithm. Must be specified if running multiple algorithms
        simultaneously, each using different environments and policies
        :param n_itr: Number of iterations.
        :param start_itr: Starting iteration.
        :param batch_size: Number of samples per iteration.  #
        :param max_path_length: Maximum length of a single rollout.
        :param meta_batch_size: Number of tasks sampled per meta-update
        :param num_grad_updates: Number of fast gradient updates
        :param discount: Discount.
        :param gae_lambda: Lambda used for generalized advantage estimation.
        :param plot: Plot evaluation run after each iteration.
        :param pause_for_plot: Whether to pause before contiuing when plotting.
        :param center_adv: Whether to rescale the advantages so that they have mean 0 and standard deviation 1.
        :param positive_adv: Whether to shift the advantages so that they are always positive. When used in
        conjunction with center_adv the advantages will be standardized before shifting.
        :param store_paths: Whether to save all paths data to the snapshot.
        :return:
        """
        self.env = env
        self.latent_dim = latent_dim
        self.kl_weighting = kl_weighting
        self.kl_scheme = kl_scheme
        self.num_total_tasks = num_total_tasks
        self.policy = policy
        self.load_policy=load_policy
        self.baseline = baseline
        self.scope = scope
        self.n_itr = n_itr
        self.start_itr = start_itr
        # batch_size is the number of trajectories for one fast grad update.
        # self.batch_size is the number of total transitions to collect.
        self.num_trajs = batch_size
        self.batch_size = batch_size * max_path_length * meta_batch_size
        self.max_path_length = max_path_length
        self.discount = discount
        self.gae_lambda = gae_lambda
        self.plot = plot
        self.pause_for_plot = pause_for_plot
        self.center_adv = center_adv
        self.positive_adv = positive_adv
        self.store_paths = store_paths
        self.whole_paths = whole_paths
        self.fixed_horizon = fixed_horizon
        self.meta_batch_size = meta_batch_size # number of tasks
        self.num_grad_updates = num_grad_updates # number of gradient steps during training
        self.latent_dist = DiagonalGaussian(self.latent_dim)
        self.plottingFolder = plottingFolder
        self.visitationFolder = visitationFolder
        self.visitationFile = visitationFile
        self.load_policy_vals = load_policy_vals
        self.reset_step = reset_step

        if sampler_cls is None:
            if singleton_pool.n_parallel > 1:
                assert False , 'parallel sampling not implemented'
            else:
                sampler_cls = VectorizedSampler
        if sampler_args is None:
            sampler_args = dict()
        sampler_args['n_envs'] = self.meta_batch_size
        sampler_args['latent_dim'] = self.latent_dim
        self.sampler = sampler_cls(self, **sampler_args)
Пример #9
0
    def __init__(
            self,
            name,
            input_shape,
            output_dim,
            mean_network=None,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=lambda x: x * 0.0 + tf.Variable(
                initial_value=-1.0, dtype=tf.float32),
            # output_nonlinearity=tf.identity,
            optimizer=None,
            use_trust_region=True,
            step_size=0.01,
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            std_nonlinearity=None,
            normalize_inputs=True,
            normalize_outputs=True,
            subsample_factor=1.0):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If
        adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned.
        :param adaptive_std: Whether to make the std a function of the states.
        :param std_share_network: Whether to use the same network as the mean.
        :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if
        `std_share_network` is False. It defaults to the same architecture as the mean.
        :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network`
        is False. It defaults to the same non-linearity as the mean.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                if use_trust_region:
                    optimizer = PenaltyLbfgsOptimizer("optimizer")
                else:
                    optimizer = LbfgsOptimizer("optimizer")

            self._optimizer = optimizer
            self._subsample_factor = subsample_factor

            if mean_network is None:

                mean_network = create_MLP(
                    name="mean_network",
                    output_dim=1,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                )
                forward_mean = lambda x, params, is_train: self.forward_MLP(
                    'mean_network',
                    all_params=params,
                    input_tensor=x,
                    is_training=is_train)[1]
            else:
                raise NotImplementedError('Not supported.')

            #     print("Debug2, mean network is defined here")
            #     mean_network = L.ParamLayer(
            #         incoming=L.InputLayer(
            #             shape=(None,) + input_shape,
            #             name="input_layer"),
            #         num_units=1,
            #         param=tf.constant_initializer(-200.0),
            #         name="mean_network",
            #         trainable=True,
            #     ),
            #     print(mean_network.input_layer)
            # print("debug4", isinstance(L.InputLayer(
            #             shape=(None,) + input_shape,
            #             name="input_layer"), tuple))
            #
            # l_mean = mean_network

            # mean_network = MLP(
            #         name="mean_network",
            #         input_shape=input_shape,
            #         output_dim=output_dim,
            #         hidden_sizes=hidden_sizes,
            #         hidden_nonlinearity=hidden_nonlinearity,
            #         output_nonlinearity=output_nonlinearity,
            #     )
            #
            # l_mean = mean_network.output_layer

            if adaptive_std:
                # l_log_std = MLP(
                #     name="log_std_network",
                #     input_shape=input_shape,
                #     input_var=mean_network.input_layer.input_var,
                #     output_dim=output_dim,
                #     hidden_sizes=std_hidden_sizes,
                #     hidden_nonlinearity=std_nonlinearity,
                #     output_nonlinearity=None,
                # ).output_layer
                raise NotImplementedError('Not supported.')
            else:
                # l_log_std = L.ParamLayer(
                #     mean_network.input_layer,
                #     num_units=output_dim,
                #     param=tf.constant_initializer(np.log(init_std)),
                #     name="output_log_std",
                #     trainable=learn_std,
                # )
                self.all_params['std_param'] = make_param_layer(
                    num_units=1,
                    param=tf.constant_initializer(init_std),
                    name="output_std_param",
                    trainable=learn_std,
                )
                forward_std = lambda x, params: forward_param_layer(
                    x, params['std_param'])
            self.all_param_vals = None

            LayersPowered.__init__(self, [l_mean, l_log_std])

            xs_var = mean_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32,
                                    name="ys",
                                    shape=(None, output_dim))
            old_means_var = tf.placeholder(dtype=tf.float32,
                                           name="ys",
                                           shape=(None, output_dim))
            old_log_stds_var = tf.placeholder(dtype=tf.float32,
                                              name="old_log_stds",
                                              shape=(None, output_dim))

            x_mean_var = tf.Variable(
                np.zeros((1, ) + input_shape, dtype=np.float32),
                name="x_mean",
            )
            x_std_var = tf.Variable(
                np.ones((1, ) + input_shape, dtype=np.float32),
                name="x_std",
            )
            y_mean_var = tf.Variable(
                np.zeros((1, output_dim), dtype=np.float32),
                name="y_mean",
            )
            y_std_var = tf.Variable(
                np.ones((1, output_dim), dtype=np.float32),
                name="y_std",
            )

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var
            normalized_ys_var = (ys_var - y_mean_var) / y_std_var

            normalized_means_var = L.get_output(
                l_mean, {mean_network.input_layer: normalized_xs_var})
            normalized_log_stds_var = L.get_output(
                l_log_std, {mean_network.input_layer: normalized_xs_var})

            means_var = normalized_means_var * y_std_var + y_mean_var
            log_stds_var = normalized_log_stds_var + tf.log(y_std_var)

            normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var
            normalized_old_log_stds_var = old_log_stds_var - tf.log(y_std_var)

            ## code added for symbolic prediction, used in constructing the meta-learning objective
            def normalized_means_var_sym(xs, params):
                inputs = OrderedDict({mean_network.input_layer: xs})
                inputs.update(params)
                return L.get_output(layer_or_layers=l_mean, inputs=inputs)

            # normalized_means_var_sym = lambda xs, params: L.get_output(layer_or_layers=l_mean, inputs=OrderedDict({mean_network.input_layer:xs}.)  #mean_network.input_layer: (xs-x_mean_var)/x_std_var,
            # normalized_log_stds_var_sym = L.get_output(l_log_std, {mean_network.input_layer: normalized_xs_var})
            means_var_sym = lambda xs, params: normalized_means_var_sym(
                xs=xs, params=params) * y_std_var + y_mean_var
            # log_stds_var = normalized_log_stds_var + tf.log(y_std_var)

            dist = self._dist = DiagonalGaussian(output_dim)

            normalized_dist_info_vars = dict(mean=normalized_means_var,
                                             log_std=normalized_log_stds_var)

            mean_kl = tf.reduce_mean(
                dist.kl_sym(
                    dict(mean=normalized_old_means_var,
                         log_std=normalized_old_log_stds_var),
                    normalized_dist_info_vars,
                ))

            # loss = - tf.reduce_mean(dist.log_likelihood_sym(normalized_ys_var, normalized_dist_info_vars))
            loss = tf.nn.l2_loss(normalized_ys_var - normalized_means_var
                                 ) + tf.nn.l2_loss(normalized_log_stds_var)
            self._f_predict = tensor_utils.compile_function([xs_var],
                                                            means_var)
            self._f_pdists = tensor_utils.compile_function(
                [xs_var], [means_var, log_stds_var])
            self._l_mean = l_mean
            self._l_log_std = l_log_std

            self._f_predict_sym = means_var_sym
            self.loss_sym = loss
            optimizer_args = dict(
                loss=loss,
                target=self,
                network_outputs=[
                    normalized_means_var, normalized_log_stds_var
                ],
            )

            if use_trust_region:
                optimizer_args["leq_constraint"] = (mean_kl, step_size)
                optimizer_args["inputs"] = [
                    xs_var, ys_var, old_means_var, old_log_stds_var
                ]
            else:
                optimizer_args["inputs"] = [xs_var, ys_var]

            self._optimizer.update_opt(**optimizer_args)

            self._use_trust_region = use_trust_region
            self._name = name

            self._normalize_inputs = normalize_inputs
            self._normalize_outputs = normalize_outputs
            self._mean_network = mean_network
            self._x_mean_var = x_mean_var
            self._x_std_var = x_std_var
            self._y_mean_var = y_mean_var
            self._y_std_var = y_std_var
Пример #10
0
    def __init__(self,
                 name,
                 env_spec,
                 hidden_sizes=(32, 32),
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 min_std=1e-6,
                 std_hidden_nonlinearity=tf.nn.tanh,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=tf.identity,
                 mean_network=None,
                 std_network=None,
                 std_parametrization='exp'):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        self.all_param_vals = False

        print('obs_dim ', obs_dim, flush=True)
        # create network
        if mean_network is None:
            self.mean_params = mean_params = self.create_MLP(
                name="mean_network",
                input_shape=(
                    None,
                    obs_dim,
                ),
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
            )
            input_tensor, mean_tensor = self.forward_MLP(
                'mean_network',
                mean_params,
                n_hidden=len(hidden_sizes),
                input_shape=(obs_dim, ),
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
                reuse=None  # Needed for batch norm
            )
            # if you want to input your own thing.
            self._forward_mean = lambda x, is_train: self.forward_MLP(
                'mean_network',
                mean_params,
                n_hidden=len(hidden_sizes),
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
                input_tensor=x,
                is_training=is_train)[1]
        else:
            raise NotImplementedError('Chelsea does not support this.')

        if std_network is not None:
            raise NotImplementedError(
                'Minimal Gaussian MLP does not support this.')
        else:
            if adaptive_std:
                # NOTE - this branch isn't tested
                raise NotImplementedError(
                    'Minimal Gaussian MLP doesnt have a tested version of this.'
                )
                self.std_params = std_params = self.create_MLP(
                    name="std_network",
                    input_shape=(
                        None,
                        obs_dim,
                    ),
                    output_dim=action_dim,
                    hidden_sizes=std_hidden_sizes,
                )
                # if you want to input your own thing.
                self._forward_std = lambda x: self.forward_MLP(
                    'std_network',
                    std_params,
                    n_hidden=len(hidden_sizes),
                    hidden_nonlinearity=std_hidden_nonlinearity,
                    output_nonlinearity=tf.identity,
                    input_tensor=x)[1]
            else:
                if std_parametrization == 'exp':
                    init_std_param = np.log(init_std)
                elif std_parametrization == 'softplus':
                    init_std_param = np.log(np.exp(init_std) - 1)
                else:
                    raise NotImplementedError
                self.std_params = make_param_layer(
                    num_units=action_dim,
                    param=tf.constant_initializer(init_std_param),
                    name="output_std_param",
                    trainable=learn_std,
                )
                self._forward_std = lambda x: forward_param_layer(
                    x, self.std_params)

        self.std_parametrization = std_parametrization

        if std_parametrization == 'exp':
            min_std_param = np.log(min_std)
        elif std_parametrization == 'softplus':
            min_std_param = np.log(np.exp(min_std) - 1)
        else:
            raise NotImplementedError

        self.min_std_param = min_std_param

        self._dist = DiagonalGaussian(action_dim)

        self._cached_params = {}

        super(GaussianMLPPolicy, self).__init__(env_spec)

        dist_info_sym = self.dist_info_sym(input_tensor,
                                           dict(),
                                           is_training=False)
        mean_var = dist_info_sym["mean"]
        log_std_var = dist_info_sym["log_std"]

        self._f_dist = tensor_utils.compile_function(
            inputs=[input_tensor],
            outputs=[mean_var, log_std_var],
        )
Пример #11
0
 def __init__(self,
              env,
              policy,
              baseline,
              scope=None,
              n_itr=500,
              start_itr=0,
              batch_size=5000,
              max_path_length=500,
              discount=0.99,
              gae_lambda=1,
              plot=False,
              pause_for_plot=False,
              center_adv=True,
              positive_adv=False,
              store_paths=False,
              whole_paths=True,
              fixed_horizon=False,
              sampler_cls=None,
              sampler_args=None,
              force_batch_sampler=False,
              load_policy=None,
              reset_arg=None,
              latent_dim=4,
              num_total_tasks=10,
              noise_opt=False,
              joint_opt=False,
              improve=False,
              **kwargs):
     """
     :param env: Environment
     :param policy: Policy
     :type policy: Policy
     :param baseline: Baseline
     :param scope: Scope for identifying the algorithm. Must be specified if running multiple algorithms
     simultaneously, each using different environments and policies
     :param n_itr: Number of iterations.
     :param start_itr: Starting iteration.
     :param batch_size: Number of samples per iteration.
     :param max_path_length: Maximum length of a single rollout.
     :param discount: Discount.
     :param gae_lambda: Lambda used for generalized advantage estimation.
     :param plot: Plot evaluation run after each iteration.
     :param pause_for_plot: Whether to pause before contiuing when plotting.
     :param center_adv: Whether to rescale the advantages so that they have mean 0 and standard deviation 1.
     :param positive_adv: Whether to shift the advantages so that they are always positive. When used in
     conjunction with center_adv the advantages will be standardized before shifting.
     :param store_paths: Whether to save all paths data to the snapshot.
     :return:
     """
     self.env = env
     self.noise_opt = noise_opt
     self.joint_opt = joint_opt
     self.latent_dim = latent_dim
     self.num_total_tasks = num_total_tasks
     self.policy = policy
     self.load_policy = load_policy
     self.baseline = baseline
     self.scope = scope
     self.n_itr = n_itr
     self.start_itr = start_itr
     self.batch_size = batch_size
     self.max_path_length = max_path_length
     self.discount = discount
     self.gae_lambda = gae_lambda
     self.plot = plot
     self.pause_for_plot = pause_for_plot
     self.center_adv = center_adv
     self.positive_adv = positive_adv
     self.store_paths = store_paths
     self.whole_paths = whole_paths
     self.fixed_horizon = fixed_horizon
     self.improve = improve
     if sampler_cls is None:
         #sampler_cls = VectorizedSampler
         sampler_cls = BatchSampler
     if sampler_args is None:
         sampler_args = dict()
     self.sampler = sampler_cls(self, **sampler_args)
     self.reset_arg = reset_arg
     self.latent_dist = DiagonalGaussian(self.latent_dim)