class StateWavelengthAndPixelAdjustment(StateBase): wavelength_low = PositiveFloatParameter() wavelength_high = PositiveFloatParameter() wavelength_step = PositiveFloatParameter() wavelength_step_type = ClassTypeParameter(RangeStepType) adjustment_files = DictParameter() idf_path = StringParameter() def __init__(self): super(StateWavelengthAndPixelAdjustment, self).__init__() self.adjustment_files = { DetectorType.to_string(DetectorType.LAB): StateAdjustmentFiles(), DetectorType.to_string(DetectorType.HAB): StateAdjustmentFiles() } def validate(self): is_invalid = {} if one_is_none([ self.wavelength_low, self.wavelength_high, self.wavelength_step, self.wavelength_step_type ]): entry = validation_message( "A wavelength entry has not been set.", "Make sure that all entries are set.", { "wavelength_low": self.wavelength_low, "wavelength_high": self.wavelength_high, "wavelength_step": self.wavelength_step, "wavelength_step_type": self.wavelength_step_type }) is_invalid.update(entry) if is_not_none_and_first_larger_than_second( [self.wavelength_low, self.wavelength_high]): entry = validation_message( "Incorrect wavelength bounds.", "Make sure that lower wavelength bound is smaller then upper bound.", { "wavelength_low": self.wavelength_low, "wavelength_high": self.wavelength_high }) is_invalid.update(entry) try: self.adjustment_files[DetectorType.to_string( DetectorType.LAB)].validate() self.adjustment_files[DetectorType.to_string( DetectorType.HAB)].validate() except ValueError as e: is_invalid.update({"adjustment_files": str(e)}) if is_invalid: raise ValueError( "StateWavelengthAndPixelAdjustment: The provided inputs are illegal. " "Please see: {0}".format(json.dumps(is_invalid)))
class StateReductionMode(StateReductionBase, StateBase): reduction_mode = ClassTypeParameter(ReductionMode) reduction_dimensionality = ClassTypeParameter(ReductionDimensionality) # Fitting merge_fit_mode = ClassTypeParameter(FitModeForMerge) merge_shift = FloatParameter() merge_scale = FloatParameter() merge_range_min = FloatWithNoneParameter() merge_range_max = FloatWithNoneParameter() # Map from detector type to detector name detector_names = DictParameter() def __init__(self): super(StateReductionMode, self).__init__() self.reduction_mode = ISISReductionMode.LAB self.reduction_dimensionality = ReductionDimensionality.OneDim # Set the shifts to defaults which essentially don't do anything. self.merge_shift = 0.0 self.merge_scale = 1.0 self.merge_fit_mode = FitModeForMerge.NoFit self.merge_range_min = None self.merge_range_max = None # Set the detector names to empty strings self.detector_names = { DetectorType.to_string(DetectorType.LAB): "", DetectorType.to_string(DetectorType.HAB): "" } def get_merge_strategy(self): return [ISISReductionMode.LAB, ISISReductionMode.HAB] def get_all_reduction_modes(self): return [ISISReductionMode.LAB, ISISReductionMode.HAB] def get_detector_name_for_reduction_mode(self, reduction_mode): if reduction_mode is ISISReductionMode.LAB: bank_type = DetectorType.to_string(DetectorType.LAB) elif reduction_mode is ISISReductionMode.HAB: bank_type = DetectorType.to_string(DetectorType.HAB) else: raise RuntimeError( "SANStateReductionISIS: There is no detector available for the" " reduction mode {0}.".format(reduction_mode)) return self.detector_names[bank_type] def validate(self): pass
class StateMove(StateBase): sample_offset = FloatParameter() sample_offset_direction = ClassTypeParameter(Coordinates) detectors = DictParameter() monitor_names = DictParameter() def __init__(self): super(StateMove, self).__init__() # Setup the sample offset self.sample_offset = 0.0 # The sample offset direction is Z for the ISIS instruments self.sample_offset_direction = CanonicalCoordinates.Z def validate(self): # No validation of the descriptors on this level, let potential exceptions from detectors "bubble" up for key in self.detectors: self.detectors[key].validate() # If the detectors are empty, then we raise if not self.detectors: raise ValueError("No detectors have been set.")
class ComplexState(StateBase): float_parameter = FloatParameter() positive_float_with_none_parameter = PositiveFloatWithNoneParameter() sub_state_1 = TypedParameter(SimpleState, validator_sub_state) dict_parameter = DictParameter() def __init__(self): super(ComplexState, self).__init__() self.float_parameter = 23. self.positive_float_with_none_parameter = 234. self.sub_state_1 = SimpleState() self.dict_parameter = {"A": SimpleState(), "B": SimpleState()} def validate(self): pass
class StateBaseTestClass(StateBase): string_parameter = StringParameter() bool_parameter = BoolParameter() float_parameter = FloatParameter() positive_float_parameter = PositiveFloatParameter() positive_integer_parameter = PositiveIntegerParameter() dict_parameter = DictParameter() float_with_none_parameter = FloatWithNoneParameter() positive_float_with_none_parameter = PositiveFloatWithNoneParameter() float_list_parameter = FloatListParameter() string_list_parameter = StringListParameter() positive_integer_list_parameter = PositiveIntegerListParameter() class_type_parameter = ClassTypeParameter(TestType) class_type_list_parameter = ClassTypeListParameter(TestType) def __init__(self): super(StateBaseTestClass, self).__init__() def validate(self): pass
class SimpleState(StateBase): string_parameter = StringParameter() bool_parameter = BoolParameter() float_parameter = FloatParameter() positive_float_parameter = PositiveFloatParameter() positive_integer_parameter = PositiveIntegerParameter() dict_parameter = DictParameter() float_with_none_parameter = FloatWithNoneParameter() positive_float_with_none_parameter = PositiveFloatWithNoneParameter() float_list_parameter = FloatListParameter() string_list_parameter = StringListParameter() positive_integer_list_parameter = PositiveIntegerListParameter() class_type_parameter = ClassTypeParameter(TestType) class_type_list_parameter = ClassTypeListParameter(TestType) sub_state_very_simple = TypedParameter(VerySimpleState, validator_sub_state) def __init__(self): super(SimpleState, self).__init__() self.string_parameter = "String_in_SimpleState" self.bool_parameter = False # We explicitly leave out the float_parameter self.positive_float_parameter = 1. self.positive_integer_parameter = 6 self.dict_parameter = {"1": 123, "2": "test"} self.float_with_none_parameter = 325. # We expliclty leave out the positive_float_with_none_parameter self.float_list_parameter = [123., 234.] self.string_list_parameter = ["test1", "test2"] self.positive_integer_list_parameter = [1, 2, 3] self.class_type_parameter = TestType.TypeA self.class_type_list_parameter = [TestType.TypeA, TestType.TypeB] self.sub_state_very_simple = VerySimpleState() def validate(self): pass
class StateNormalizeToMonitor(StateBase): prompt_peak_correction_min = PositiveFloatWithNoneParameter() prompt_peak_correction_max = PositiveFloatWithNoneParameter() prompt_peak_correction_enabled = BoolParameter() rebin_type = ClassTypeParameter(RebinType) wavelength_low = PositiveFloatListParameter() wavelength_high = PositiveFloatListParameter() wavelength_step = PositiveFloatParameter() wavelength_step_type = ClassTypeParameter(RangeStepType) background_TOF_general_start = FloatParameter() background_TOF_general_stop = FloatParameter() background_TOF_monitor_start = DictParameter() background_TOF_monitor_stop = DictParameter() incident_monitor = PositiveIntegerParameter() def __init__(self): super(StateNormalizeToMonitor, self).__init__() self.background_TOF_monitor_start = {} self.background_TOF_monitor_stop = {} self.prompt_peak_correction_enabled = False # Default rebin type is a standard Rebin self.rebin_type = RebinType.Rebin def validate(self): is_invalid = {} # ----------------- # incident Monitor # ----------------- if self.incident_monitor is None: is_invalid.update( {"incident_monitor": "An incident monitor must be specified."}) # ----------------- # Prompt peak # ----------------- if not is_pure_none_or_not_none( [self.prompt_peak_correction_min, self.prompt_peak_correction_max ]): entry = validation_message( "A prompt peak correction entry has not been set.", "Make sure that either all prompt peak entries have been set or none.", { "prompt_peak_correction_min": self.prompt_peak_correction_min, "prompt_peak_correction_max": self.prompt_peak_correction_max }) is_invalid.update(entry) if is_not_none_and_first_larger_than_second( [self.prompt_peak_correction_min, self.prompt_peak_correction_max]): entry = validation_message( "Incorrect prompt peak correction bounds.", "Make sure that lower prompt peak time bound is smaller then upper bound.", { "prompt_peak_correction_min": self.prompt_peak_correction_min, "prompt_peak_correction_max": self.prompt_peak_correction_max }) is_invalid.update(entry) # ----------------- # Wavelength rebin # ----------------- if one_is_none([ self.wavelength_low, self.wavelength_high, self.wavelength_step, self.wavelength_step_type ]): entry = validation_message( "A wavelength entry has not been set.", "Make sure that all entries are set.", { "wavelength_low": self.wavelength_low, "wavelength_high": self.wavelength_high, "wavelength_step": self.wavelength_step, "wavelength_step_type": self.wavelength_step_type }) is_invalid.update(entry) if is_not_none_and_first_larger_than_second( [self.wavelength_low, self.wavelength_high]): entry = validation_message( "Incorrect wavelength bounds.", "Make sure that lower wavelength bound is smaller then upper bound.", { "wavelength_low": self.wavelength_low, "wavelength_high": self.wavelength_high }) is_invalid.update(entry) # ---------------------- # Background correction # ---------------------- if not is_pure_none_or_not_none([ self.background_TOF_general_start, self.background_TOF_general_stop ]): entry = validation_message( "A general background TOF entry has not been set.", "Make sure that either all general background TOF entries are set or none.", { "background_TOF_general_start": self.background_TOF_general_start, "background_TOF_general_stop": self.background_TOF_general_stop }) is_invalid.update(entry) if is_not_none_and_first_larger_than_second([ self.background_TOF_general_start, self.background_TOF_general_stop ]): entry = validation_message( "Incorrect general background TOF bounds.", "Make sure that lower general background TOF bound is smaller then upper bound.", { "background_TOF_general_start": self.background_TOF_general_start, "background_TOF_general_stop": self.background_TOF_general_stop }) is_invalid.update(entry) if not is_pure_none_or_not_none([ self.background_TOF_monitor_start, self.background_TOF_monitor_stop ]): entry = validation_message( "A monitor background TOF entry has not been set.", "Make sure that either all monitor background TOF entries are set or none.", { "background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop }) is_invalid.update(entry) if self.background_TOF_monitor_start is not None and self.background_TOF_monitor_stop is not None: if len(self.background_TOF_monitor_start) != len( self.background_TOF_monitor_stop): entry = validation_message( "The monitor background TOF entries have a length mismatch.", "Make sure that all monitor background TOF entries have the same length.", { "background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop }) is_invalid.update(entry) for key_start, value_start in list( self.background_TOF_monitor_start.items()): if key_start not in self.background_TOF_monitor_stop: entry = validation_message( "The monitor background TOF had spectrum number mismatch.", "Make sure that all monitors have entries for start and stop.", { "background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop }) is_invalid.update(entry) else: value_stop = self.background_TOF_monitor_stop[key_start] if value_start > value_stop: entry = validation_message( "Incorrect monitor background TOF bounds.", "Make sure that lower monitor background TOF bound is" " smaller then upper bound.", { "background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop }) is_invalid.update(entry) if is_invalid: raise ValueError( "StateMoveDetector: The provided inputs are illegal. " "Please see: {0}".format(json.dumps(is_invalid)))
class StateMask(StateBase): # Radius Mask radius_min = FloatParameter() radius_max = FloatParameter() # Bin mask bin_mask_general_start = FloatListParameter() bin_mask_general_stop = FloatListParameter() # Mask files mask_files = StringListParameter() # Angle masking phi_min = FloatParameter() phi_max = FloatParameter() use_mask_phi_mirror = BoolParameter() # Beam stop beam_stop_arm_width = PositiveFloatParameter() beam_stop_arm_angle = FloatParameter() beam_stop_arm_pos1 = FloatParameter() beam_stop_arm_pos2 = FloatParameter() # Clear commands clear = BoolParameter() clear_time = BoolParameter() # The detector dependent masks detectors = DictParameter() # The idf path of the instrument idf_path = StringParameter() def __init__(self): super(StateMask, self).__init__() # Setup the detectors self.detectors = { DetectorType.to_string(DetectorType.LAB): StateMaskDetector(), DetectorType.to_string(DetectorType.HAB): StateMaskDetector() } # IDF Path self.idf_path = "" def validate(self): is_invalid = dict() # -------------------- # Radius Mask # -------------------- # Radius mask rule: the min radius must be less or equal to the max radius if self.radius_max is not None and self.radius_min is not None and\ self.radius_max != -1 and self.radius_min != -1: # noqa if self.radius_min > 0 and self.radius_max > 0 and ( self.radius_min > self.radius_max): entry = validation_message( "Incorrect radius bounds.", "Makes sure that the lower radius bound is smaller than the" " upper radius bound.", { "radius_min": self.radius_min, "radius_max": self.radius_max }) is_invalid.update(entry) # -------------------- # General bin mask # -------------------- range_check(self.bin_mask_general_start, self.bin_mask_general_stop, is_invalid, "bin_mask_general_start", "bin_mask_general_stop", "bin_mask_general") # -------------------- # Mask files # -------------------- if self.mask_files: for mask_file in self.mask_files: if not find_full_file_path(mask_file): entry = validation_message( "Mask file not found.", "Makes sure that the mask file is in your path", {"mask_file": self.mask_files}) is_invalid.update(entry) # -------------------- # Detectors # -------------------- for _, value in list(self.detectors.items()): value.validate() if is_invalid: raise ValueError("StateMask: The provided inputs are illegal. " "Please see: {0}".format(json.dumps(is_invalid)))
class StateReductionMode(StateReductionBase, StateBase): reduction_mode = ClassTypeParameter(ReductionMode) reduction_dimensionality = ClassTypeParameter(ReductionDimensionality) merge_max = FloatWithNoneParameter() merge_min = FloatWithNoneParameter() merge_mask = BoolParameter() # Fitting merge_fit_mode = ClassTypeParameter(FitModeForMerge) merge_shift = FloatParameter() merge_scale = FloatParameter() merge_range_min = FloatWithNoneParameter() merge_range_max = FloatWithNoneParameter() # Map from detector type to detector name detector_names = DictParameter() def __init__(self): super(StateReductionMode, self).__init__() self.reduction_mode = ISISReductionMode.LAB self.reduction_dimensionality = ReductionDimensionality.OneDim # Set the shifts to defaults which essentially don't do anything. self.merge_shift = 0.0 self.merge_scale = 1.0 self.merge_fit_mode = FitModeForMerge.NoFit self.merge_range_min = None self.merge_range_max = None self.merge_max = None self.merge_min = None self.merge_mask = False # Set the detector names to empty strings self.detector_names = { DetectorType.to_string(DetectorType.LAB): "", DetectorType.to_string(DetectorType.HAB): "" } def get_merge_strategy(self): return [ISISReductionMode.LAB, ISISReductionMode.HAB] def get_all_reduction_modes(self): return [ISISReductionMode.LAB, ISISReductionMode.HAB] def get_detector_name_for_reduction_mode(self, reduction_mode): if reduction_mode is ISISReductionMode.LAB: bank_type = DetectorType.to_string(DetectorType.LAB) elif reduction_mode is ISISReductionMode.HAB: bank_type = DetectorType.to_string(DetectorType.HAB) else: raise RuntimeError( "SANStateReductionISIS: There is no detector available for the" " reduction mode {0}.".format(reduction_mode)) return self.detector_names[bank_type] def validate(self): is_invalid = {} if self.merge_max and self.merge_min: if self.merge_min > self.merge_max: is_invalid.update({ "StateReduction": "The minimum of the merge region is greater than the maximum." }) if is_invalid: raise ValueError( "StateReduction: The provided inputs are illegal. " "Please see: {0}".format(json.dumps(is_invalid)))
class StateCalculateTransmission(StateBase): # ----------------------- # Transmission # ----------------------- transmission_radius_on_detector = PositiveFloatParameter() transmission_roi_files = StringListParameter() transmission_mask_files = StringListParameter() default_transmission_monitor = PositiveIntegerParameter() transmission_monitor = PositiveIntegerParameter() default_incident_monitor = PositiveIntegerParameter() incident_monitor = PositiveIntegerParameter() # ---------------------- # Prompt peak correction # ---------------------- prompt_peak_correction_min = PositiveFloatParameter() prompt_peak_correction_max = PositiveFloatParameter() prompt_peak_correction_enabled = BoolParameter() # ---------------- # Wavelength rebin # ---------------- rebin_type = ClassTypeParameter(RebinType) wavelength_low = PositiveFloatParameter() wavelength_high = PositiveFloatParameter() wavelength_step = PositiveFloatParameter() wavelength_step_type = ClassTypeParameter(RangeStepType) use_full_wavelength_range = BoolParameter() wavelength_full_range_low = PositiveFloatParameter() wavelength_full_range_high = PositiveFloatParameter() # ----------------------- # Background correction # ---------------------- background_TOF_general_start = FloatParameter() background_TOF_general_stop = FloatParameter() background_TOF_monitor_start = DictParameter() background_TOF_monitor_stop = DictParameter() background_TOF_roi_start = FloatParameter() background_TOF_roi_stop = FloatParameter() # ----------------------- # Fit # ---------------------- fit = DictParameter() def __init__(self): super(StateCalculateTransmission, self).__init__() # The keys of this dictionaries are the spectrum number of the monitors (as a string) self.background_TOF_monitor_start = {} self.background_TOF_monitor_stop = {} self.fit = {DataType.to_string(DataType.Sample): StateTransmissionFit(), DataType.to_string(DataType.Can): StateTransmissionFit()} self.use_full_wavelength_range = False # Default rebin type is a standard Rebin self.rebin_type = RebinType.Rebin self.prompt_peak_correction_enabled = False def validate(self): # noqa is_invalid = {} # ----------------- # Incident monitor # ----------------- if self.incident_monitor is None and self.default_incident_monitor is None: entry = validation_message("No incident monitor was specified.", "Make sure that incident monitor has been specified.", {"incident_monitor": self.incident_monitor, "default_incident_monitor": self.default_incident_monitor}) is_invalid.update(entry) # -------------- # Transmission, either we need some ROI (ie radius, roi files /mask files) or a transmission monitor # -------------- has_no_transmission_monitor_setting = self.transmission_monitor is None and\ self.default_transmission_monitor is None # noqa has_no_transmission_roi_setting = self.transmission_radius_on_detector is None and\ self.transmission_roi_files is None # noqa if has_no_transmission_monitor_setting and has_no_transmission_roi_setting: entry = validation_message("No transmission settings were specified.", "Make sure that transmission settings are specified.", {"transmission_monitor": self.transmission_monitor, "default_transmission_monitor": self.default_transmission_monitor, "transmission_radius_on_detector": self.transmission_radius_on_detector, "transmission_roi_files": self.transmission_roi_files}) is_invalid.update(entry) # ----------------- # Prompt peak # ----------------- if not is_pure_none_or_not_none([self.prompt_peak_correction_min, self.prompt_peak_correction_max]): entry = validation_message("Inconsistent prompt peak setting.", "Make sure that you have specified both prompt peak bounds (or none).", {"prompt_peak_correction_min": self.prompt_peak_correction_min, "prompt_peak_correction_max": self.prompt_peak_correction_max}) is_invalid.update(entry) if is_not_none_and_first_larger_than_second([self.prompt_peak_correction_min, self.prompt_peak_correction_max]): entry = validation_message("Incorrect prompt peak bounds.", "Make sure that lower prompt peak bound is smaller then upper bound.", {"prompt_peak_correction_min": self.prompt_peak_correction_min, "prompt_peak_correction_max": self.prompt_peak_correction_max}) is_invalid.update(entry) # ----------------- # Wavelength rebin # ----------------- if one_is_none([self.wavelength_low, self.wavelength_high, self.wavelength_step, self.wavelength_step_type, self.wavelength_step_type, self.rebin_type]): entry = validation_message("A wavelength entry has not been set.", "Make sure that all entries are set.", {"wavelength_low": self.wavelength_low, "wavelength_high": self.wavelength_high, "wavelength_step": self.wavelength_step, "wavelength_step_type": self.wavelength_step_type, "rebin_type": self.rebin_type}) is_invalid.update(entry) if is_not_none_and_first_larger_than_second([self.wavelength_low, self.wavelength_high]): entry = validation_message("Incorrect wavelength bounds.", "Make sure that lower wavelength bound is smaller then upper bound.", {"wavelength_low": self.wavelength_low, "wavelength_high": self.wavelength_high}) is_invalid.update(entry) if self.use_full_wavelength_range: if self.wavelength_full_range_low is None or self.wavelength_full_range_high is None: entry = validation_message("Incorrect full wavelength settings.", "Make sure that both full wavelength entries have been set.", {"wavelength_full_range_low": self.wavelength_full_range_low, "wavelength_full_range_high": self.wavelength_full_range_high}) is_invalid.update(entry) if is_not_none_and_first_larger_than_second([self.wavelength_full_range_low, self.wavelength_full_range_high]): entry = validation_message("Incorrect wavelength bounds.", "Make sure that lower full wavelength bound is smaller then upper bound.", {"wavelength_full_range_low": self.wavelength_full_range_low, "wavelength_full_range_high": self.wavelength_full_range_high}) is_invalid.update(entry) # ---------------------- # Background correction # ---------------------- if not is_pure_none_or_not_none([self.background_TOF_general_start, self.background_TOF_general_stop]): entry = validation_message("A general background TOF entry has not been set.", "Make sure that either all general background TOF entries are set or none.", {"background_TOF_general_start": self.background_TOF_general_start, "background_TOF_general_stop": self.background_TOF_general_stop}) is_invalid.update(entry) if is_not_none_and_first_larger_than_second([self.background_TOF_general_start, self.background_TOF_general_stop]): entry = validation_message("Incorrect general background TOF bounds.", "Make sure that lower general background TOF bound is smaller then upper bound.", {"background_TOF_general_start": self.background_TOF_general_start, "background_TOF_general_stop": self.background_TOF_general_stop}) is_invalid.update(entry) if not is_pure_none_or_not_none([self.background_TOF_roi_start, self.background_TOF_roi_stop]): entry = validation_message("A ROI background TOF entry has not been set.", "Make sure that either all ROI background TOF entries are set or none.", {"background_TOF_roi_start": self.background_TOF_roi_start, "background_TOF_roi_stop": self.background_TOF_roi_stop}) is_invalid.update(entry) if is_not_none_and_first_larger_than_second([self.background_TOF_roi_start, self.background_TOF_roi_stop]): entry = validation_message("Incorrect ROI background TOF bounds.", "Make sure that lower ROI background TOF bound is smaller then upper bound.", {"background_TOF_roi_start": self.background_TOF_roi_start, "background_TOF_roi_stop": self.background_TOF_roi_stop}) is_invalid.update(entry) if not is_pure_none_or_not_none([self.background_TOF_monitor_start, self.background_TOF_monitor_stop]): entry = validation_message("A monitor background TOF entry has not been set.", "Make sure that either all monitor background TOF entries are set or none.", {"background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop}) is_invalid.update(entry) if self.background_TOF_monitor_start is not None and self.background_TOF_monitor_stop is not None: if len(self.background_TOF_monitor_start) != len(self.background_TOF_monitor_stop): entry = validation_message("The monitor background TOF entries have a length mismatch.", "Make sure that all monitor background TOF entries have the same length.", {"background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop}) is_invalid.update(entry) for key_start, value_start in list(self.background_TOF_monitor_start.items()): if key_start not in self.background_TOF_monitor_stop: entry = validation_message("The monitor background TOF had spectrum number mismatch.", "Make sure that all monitors have entries for start and stop.", {"background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop}) is_invalid.update(entry) else: value_stop = self.background_TOF_monitor_stop[key_start] if value_start > value_stop: entry = validation_message("Incorrect monitor background TOF bounds.", "Make sure that lower monitor background TOF bound is" " smaller then upper bound.", {"background_TOF_monitor_start": self.background_TOF_monitor_start, "background_TOF_monitor_stop": self.background_TOF_monitor_stop}) is_invalid.update(entry) # ----- # Fit # ----- self.fit[DataType.to_string(DataType.Sample)].validate() self.fit[DataType.to_string(DataType.Can)].validate() if is_invalid: raise ValueError("StateCalculateTransmission: The provided inputs are illegal. " "Please see: {0}".format(json.dumps(is_invalid)))