Пример #1
0
    def test4(self):
        """ fit 2 data concatenates with limited range of x and  one model """
            #load data
        l = Loader()
        data1 = l.load("testdata_line.txt")
        data1.name = data1.filename
        data2 = l.load("testdata_line1.txt")
        data2.name = data2.filename

        # Receives the type of model for the fitting
        model1  = LineModel()
        model1.name= "M1"
        model1.setParam("A", 1.0)
        model1.setParam("B",1.0)
        model = Model(model1,data1)
      
        pars1= ['A','B']
        #Importing the Fit module

        fitter = Fit()
        fitter.set_data(data1,1,qmin=0, qmax=7)
        fitter.set_model(model,1,pars1)
        fitter.set_data(data2,1,qmin=1,qmax=10)
        fitter.select_problem_for_fit(id=1,value=1)
        result2, = fitter.fit(handler=FitHandler())
        
        self.assert_(result2)
        self.assertTrue( math.fabs(result2.pvec[0]-4)/3 <= result2.stderr[0] )
        self.assertTrue( math.fabs(result2.pvec[1]-2.5)/3 <= result2.stderr[1] )
        self.assertTrue( result2.fitness/len(data1.x) < 2)
Пример #2
0
    def test4(self):
        """ fit 2 data concatenates with limited range of x and  one model """
        #load data
        l = Loader()
        data1 = l.load("testdata_line.txt")
        data1.name = data1.filename
        data2 = l.load("testdata_line1.txt")
        data2.name = data2.filename

        # Receives the type of model for the fitting
        model1 = LineModel()
        model1.name = "M1"
        model1.setParam("A", 1.0)
        model1.setParam("B", 1.0)
        model = Model(model1, data1)

        pars1 = ['A', 'B']
        #Importing the Fit module

        fitter = Fit('bumps')
        fitter.set_data(data1, 1, qmin=0, qmax=7)
        fitter.set_model(model, 1, pars1)
        fitter.set_data(data2, 1, qmin=1, qmax=10)
        fitter.select_problem_for_fit(id=1, value=1)
        result2, = fitter.fit(handler=FitHandler())

        self.assert_(result2)
        self.assertTrue(
            math.fabs(result2.pvec[0] - 4) / 3 <= result2.stderr[0])
        self.assertTrue(
            math.fabs(result2.pvec[1] - 2.5) / 3 <= result2.stderr[1])
        self.assertTrue(result2.fitness / len(data1.x) < 2)
Пример #3
0
 def test_constraints(self):
     """ fit 2 data and 2 model with 1 constrainst"""
     #load data
     l = Loader()
     data1= l.load("testdata_line.txt")
     data1.name = data1.filename
     data2= l.load("testdata_cst.txt")
     data2.name = data2.filename
    
     # Receives the type of model for the fitting
     model11  = LineModel()
     model11.name= "line"
     model11.setParam("A", 1.0)
     model11.setParam("B",1.0)
     
     model22  = Constant()
     model22.name= "cst"
     model22.setParam("value", 1.0)
     
     model1 = Model(model11,data1)
     model2 = Model(model22,data2)
     model1.set(A=4)
     model1.set(B=3)
     # Constraint the constant value to be equal to parameter B (the real value is 2.5)
     #model2.set(value='line.B')
     pars1= ['A','B']
     pars2= ['value']
     
     #Importing the Fit module
     fitter = Fit()
     fitter.set_data(data1,1)
     fitter.set_model(model1,1,pars1)
     fitter.set_data(data2,2,smearer=None)
     fitter.set_model(model2,2,pars2,constraints=[("value","line.B")])
     fitter.select_problem_for_fit(id=1,value=1)
     fitter.select_problem_for_fit(id=2,value=1)
     
     R1,R2 = fitter.fit(handler=FitHandler())
     self.assertTrue( math.fabs(R1.pvec[0]-4.0)/3. <= R1.stderr[0])
     self.assertTrue( math.fabs(R1.pvec[1]-2.5)/3. <= R1.stderr[1])
     self.assertTrue( R1.fitness/(len(data1.x)+len(data2.x)) < 2)
Пример #4
0
    def test_constraints(self):
        """ fit 2 data and 2 model with 1 constrainst"""
        #load data
        l = Loader()
        data1 = l.load("testdata_line.txt")
        data1.name = data1.filename
        data2 = l.load("testdata_cst.txt")
        data2.name = data2.filename

        # Receives the type of model for the fitting
        model11 = LineModel()
        model11.name = "line"
        model11.setParam("A", 1.0)
        model11.setParam("B", 1.0)

        model22 = Constant()
        model22.name = "cst"
        model22.setParam("value", 1.0)

        model1 = Model(model11, data1)
        model2 = Model(model22, data2)
        model1.set(A=4)
        model1.set(B=3)
        # Constraint the constant value to be equal to parameter B (the real value is 2.5)
        #model2.set(value='line.B')
        pars1 = ['A', 'B']
        pars2 = ['value']

        #Importing the Fit module
        fitter = Fit('bumps')
        fitter.set_data(data1, 1)
        fitter.set_model(model1, 1, pars1)
        fitter.set_data(data2, 2, smearer=None)
        fitter.set_model(model2, 2, pars2, constraints=[("value", "line.B")])
        fitter.select_problem_for_fit(id=1, value=1)
        fitter.select_problem_for_fit(id=2, value=1)

        R1, R2 = fitter.fit(handler=FitHandler())
        self.assertTrue(math.fabs(R1.pvec[0] - 4.0) / 3. <= R1.stderr[0])
        self.assertTrue(math.fabs(R1.pvec[1] - 2.5) / 3. <= R1.stderr[1])
        self.assertTrue(R1.fitness / (len(data1.x) + len(data2.x)) < 2)