Пример #1
0
for i in range(ndirs):
    im_dc[i, :, :] = tf.ifft2c(data_dc[i, :, :], ph_b1[i, :, :])

# A way to quickly plot the different direction cases
if 0:
    for i in range(ndirs):
        ims = [
            im_b0_avg, im_b1_full[i, :, :], im_b1_scan[i, :, :], im_dc[i, :, :]
        ]
        titles = [
            'b0 Average', 'im_full dir' + str(i), 'im_scan dir' + str(i),
            'im_dc dir' + str(i)
        ]
        vis.figSubplots(ims, clim=(minval, maxval), titles=titles)
        saveFig.save(
            '/micehome/asalerno/Documents/pyDirectionCompSense/brainData/DTI/26apr16/33per/imdc/im_b1_comps_dir'
            + str(i))

im_sp = im_dc.copy().reshape(N)

# Optimization algortihm -- this is where everything culminates together
#M, dIM, Ause, inds = dirInfo

for i in range(len(TV)):
    args = (N, TV[i], XFM[i], data_b1, k, strtag, ph_b1, dirWeight, dirs,
            dirInfo, nmins, wavelet, mode, a)
    im_result = opt.minimize(optfun,
                             im_dc,
                             args=args,
                             method=method,
                             jac=derivative_fun,
def runCSAlgorithm(fromfid=False,
                   filename='/home/asalerno/Documents/pyDirectionCompSense/brainData/P14/data/fullySampledBrain.npy',
                   sliceChoice=150,
                   strtag = ['','spatial', 'spatial'],
                   xtol = [1e-2, 1e-3, 5e-4, 5e-4],
                   TV = [0.01, 0.005, 0.002, 0.001],
                   XFM = [0.01,.005, 0.002, 0.001],
                   dirWeight=0,
                   pctg=0.25,
                   radius=0.2,
                   P=2,
                   pft=False,
                   ext=0.5,
                   wavelet='db4',
                   mode='per',
                   method='CG',
                   ItnLim=30,
                   lineSearchItnLim=30,
                   alpha_0=0.6,
                   c=0.6,
                   a=10.0,
                   kern = 
                   np.array([[[ 0.,  0.,  0.], 
                   [ 0.,  0.,  0.], 
                   [ 0.,  0.,  0.]],                
                  [[ 0.,  0.,  0.],
                  [ 0., -1.,  0.],
                  [ 0.,  1.,  0.]],
                  [[ 0.,  0.,  0.],
                  [ 0., -1.,  1.],
                  [ 0.,  0.,  0.]]]),
                   dirFile = None,
                   nmins = None,
                   dirs = None,
                   M = None,
                   dirInfo = [None]*4,
                   saveNpy=False,
                   saveNpyFile=None,
                   saveImsPng=False,
                   saveImsPngFile=None,
                   saveImDiffPng=False,
                   saveImDiffPngFile=None,
                   disp=False):
    ##import pdb; pdb.set_trace()
    if fromfid==True:
        inputdirectory=filename[0]
        petable=filename[1]
        fullImData = rff.getDataFromFID(petable,inputdirectory,2)[0,:,:,:]
        fullImData = fullImData/np.max(abs(fullImData))
        im = fullImData[:,:,sliceChoice]
    else:
        im = np.load(filename)[sliceChoice,:,:]
        
    N = np.array(im.shape)  # image Size

    pdf = samp.genPDF(N[-2:], P, pctg, radius=radius, cyl=np.hstack([1, N[-2:]]), style='mult', pft=pft, ext=ext)
    if pft:
        print('Partial Fourier sampling method used')
    k = samp.genSampling(pdf, 50, 2)[0].astype(int)
    if len(N) == 2:
        N = np.hstack([1, N])
        k = k.reshape(N)
        im = im.reshape(N)
    elif (len(N) == 3) and ('dir' not in strtag):
        k = k.reshape(np.hstack([1,N[-2:]])).repeat(N[0],0)

    ph_ones = np.ones(N[-2:], complex)
    ph_scan = np.zeros(N, complex)
    data = np.zeros(N,complex)
    im_scan = np.zeros(N,complex)
    for i in range(N[0]):
        k[i,:,:] = np.fft.fftshift(k[i,:,:])
        data[i,:,:] = k[i,:,:]*tf.fft2c(im[i,:,:], ph=ph_ones)

        # IMAGE from the "scanner data"
        im_scan_wph = tf.ifft2c(data[i,:,:], ph=ph_ones)
        ph_scan[i,:,:] = tf.matlab_style_gauss2D(im_scan_wph,shape=(5,5))
        ph_scan[i,:,:] = np.exp(1j*ph_scan[i,:,:])
        im_scan[i,:,:] = tf.ifft2c(data[i,:,:], ph=ph_scan[i,:,:])
        #im_lr = samp.loRes(im,pctg)
    
    # ------------------------------------------------------------------ #
    # A quick way to look at the PSF of the sampling pattern that we use #
    delta = np.zeros(N[-2:])
    delta[int(N[-2]/2),int(N[-1]/2)] = 1
    psf = tf.ifft2c(tf.fft2c(delta,ph_ones)*k,ph_ones)
    # ------------------------------------------------------------------ #


    ## ------------------------------------------------------------------ #
    ## -- Currently broken - Need to figure out what's happening here. -- #
    ## ------------------------------------------------------------------ #
    #if pft:
        #for i in xrange(N[0]):
            #dataHold = np.fft.fftshift(data[i,:,:])
            #kHold = np.fft.fftshift(k[i,:,:])
            #loc = 98
            #for ix in xrange(N[-2]):
                #for iy in xrange(loc,N[-1]):
                    #dataHold[-ix,-iy] = dataHold[ix,iy].conj()
                    #kHold[-ix,-iy] = kHold[ix,iy]
    ## ------------------------------------------------------------------ #
    
    pdfDiv = pdf.copy()
    pdfZeros = np.where(pdf==0)
    pdfDiv[pdfZeros] = 1
    #im_scan_imag = im_scan.imag
    #im_scan = im_scan.real

    N_im = N.copy()
    hld, dims, dimOpt, dimLenOpt = tf.wt(im_scan[0].real,wavelet,mode)
    N = np.hstack([N_im[0], hld.shape])

    w_scan = np.zeros(N)
    w_full = np.zeros(N)
    im_dc = np.zeros(N_im)
    w_dc = np.zeros(N)

    for i in xrange(N[0]):
        w_scan[i,:,:] = tf.wt(im_scan.real[i,:,:],wavelet,mode,dims,dimOpt,dimLenOpt)[0]
        w_full[i,:,:] = tf.wt(abs(im[i,:,:]),wavelet,mode,dims,dimOpt,dimLenOpt)[0]

        im_dc[i,:,:] = tf.ifft2c(data[i,:,:] / np.fft.ifftshift(pdfDiv), ph=ph_scan[i,:,:]).real.copy()
        w_dc[i,:,:] = tf.wt(im_dc,wavelet,mode,dims,dimOpt,dimLenOpt)[0]

    w_dc = w_dc.flatten()
    im_sp = im_dc.copy().reshape(N_im)
    minval = np.min(abs(im))
    maxval = np.max(abs(im))
    data = np.ascontiguousarray(data)

    imdcs = [im_dc,np.zeros(N_im),np.ones(N_im),np.random.randn(np.prod(N_im)).reshape(N_im)]
    imdcs[-1] = imdcs[-1] - np.min(imdcs[-1])
    imdcs[-1] = imdcs[-1]/np.max(abs(imdcs[-1]))
    mets = ['Density Corrected','Zeros','1/2''s','Gaussian Random Shift (0,1)']
    wdcs = []
    for i in range(len(imdcs)):
        wdcs.append(tf.wt(imdcs[i][0],wavelet,mode,dims,dimOpt,dimLenOpt)[0].reshape(N))

    ims = []
    #print('Starting the CS Algorithm')
    for kk in range(len(wdcs)):
        w_dc = wdcs[kk]
        print(mets[kk])
        for i in range(len(TV)):
            args = (N, N_im, dims, dimOpt, dimLenOpt, TV[i], XFM[i], data, k, strtag, ph_scan, kern, dirWeight, dirs, dirInfo, nmins, wavelet, mode, a)
            w_result = opt.minimize(f, w_dc, args=args, method=method, jac=df, 
                                        options={'maxiter': ItnLim, 'lineSearchItnLim': lineSearchItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': alpha_0, 'c': c, 'xtol': xtol[i], 'TVWeight': TV[i], 'XFMWeight': XFM[i], 'N': N})
            if np.any(np.isnan(w_result['x'])):
                print('Some nan''s found. Dropping TV and XFM values')
            elif w_result['status'] != 0:
                print('TV and XFM values too high -- no solution found. Dropping...')
            else:
                w_dc = w_result['x']
                
        w_res = w_dc.reshape(N)
        im_res = np.zeros(N_im)
        for i in xrange(N[0]):
            im_res[i,:,:] = tf.iwt(w_res[i,:,:],wavelet,mode,dims,dimOpt,dimLenOpt)
        ims.append(im_res)
    
    if saveNpy:
        if saveNpyFile is None:
            np.save('./holdSave_im_res_' + str(int(pctg*100)) + 'p_all_SP',ims)
        else:
            np.save(saveNpyFile,ims)
    
    if saveImsPng:
        vis.figSubplots(ims,titles=mets,clims=(minval,maxval),colorbar=True)
        if not disp:
            if saveImsPngFile is None:
                saveFig.save('./holdSave_ims_' + str(int(pctg*100)) + 'p_all_SP')
            else:
                saveFig.save(saveImsPngFile)
    
    if saveImDiffPng:
        imdiffs, clims = vis.imDiff(ims)
        diffMets = ['DC-Zeros','DC-Ones','DC-Random','Zeros-Ones','Zeros-Random','Ones-Random']
        vis.figSubplots(imdiffs,titles=diffMets,clims=clims,colorbar=True)
        if not disp:
            if saveImDiffPngFile is None:
                saveFig.save('./holdSave_im_diffs_' + str(int(pctg*100)) + 'p_all_SP')
            else:
                saveFig.save(saveImDiffPngFile)
    
    if disp:
        plt.show()
Пример #3
0
for i in range(4):
    clims.append([0, 1])
vis.figSubplots([
    abs(im[0]), im_scan[0].real, im_scanComb[0].real, im_scanDir[0].real,
    im_scanDirComb[0].real, k[0], kDir[0], kComb[0], kDirComb[0]
],
                clims=clims,
                titles=[
                    'Original', 'Var Dens', 'Var Dens Comb', 'Uni Samp',
                    'Uni Samp Comb', 'Var Dens k', 'Combo Dens k',
                    'Var Dens Shared k', 'Combo Dens Shared k'
                ],
                colorbar=False)

#plt.show()
saveFig.save('tests/directionTests/phantomSmoothed_teamWithVarDens')

plt.figure(figsize=(24, 13.5))
plt.subplot(2, 2, 1)
samp.radialHistogram(k[0], rmax=1)
plt.title('Radial Histogram Var Dens')
plt.subplot(2, 2, 2)
samp.radialHistogram(kDir[0], rmax=1)
plt.title('Radial Histogram Combo Dens')
plt.subplot(2, 2, 3)
samp.radialHistogram(kComb[0], rmax=1)
plt.title('Radial Histogram Var Dens Shared')
plt.subplot(2, 2, 4)
samp.radialHistogram(kDirComb[0], rmax=1)
plt.title('Radial Histogram Combo Dens Shared')
saveFig.save('tests/directionTests/phantomSmoothed_radialHistograms')
# Now we add the k-space maps together in order to utilize the redundancies ot our advantage
data_dc = np.fft.fftshift(d.dir_dataSharing(k, np.fft.fftshift(data_b1, axes=(-2,-1)), dirs=dirs,
                          origDataSize=N[-2:]), axes=(-2,-1))
im_dc = np.zeros(data_dc.shape, dtype='complex')
# And make the images
for i in range(ndirs):
    im_dc[i,:,:] = tf.ifft2c(data_dc[i,:,:],ph_b1[i,:,:])
    

# A way to quickly plot the different direction cases
if 0:
    for i in range(ndirs):
        ims = [im_b0_avg, im_b1_full[i,:,:], im_b1_scan[i,:,:], im_dc[i,:,:]]
        titles = ['b0 Average', 'im_full dir' + str(i), 'im_scan dir' + str(i), 'im_dc dir' + str(i)]
        vis.figSubplots(ims,clim=(minval,maxval),titles=titles)
        saveFig.save('/micehome/asalerno/Documents/pyDirectionCompSense/brainData/DTI/26apr16/33per/imdc/im_b1_comps_dir'+str(i))
    

im_sp = im_dc.copy().reshape(N)

# Optimization algortihm -- this is where everything culminates together
#M, dIM, Ause, inds = dirInfo

for i in range(len(TV)):
    args = (N, TV[i], XFM[i], data_b1, k, strtag, ph_b1, dirWeight, dirs, dirInfo, nmins, wavelet, mode, a)
    im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                            options={'maxiter': ItnLim, 'lineSearchItnLim': lineSearchItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': alpha_0, 'c': c, 'xtol': xtol[i], 'TVWeight': TV[i], 'XFMWeight': XFM[i], 'N': N})
        
    if np.any(np.isnan(im_result['x'])):
        print('Some nan''s found. Dropping TV and XFM values')
    else:
    elif imdcs == 'densCorr_Completed':
        #im_dc = np.load('/home/asalerno/Documents/pyDirectionCompSense/brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/TV0.005_XFM0.005/0.25per_result_im_dc_densCorr.npy')
        im_dc = im_res
        TVWeight = 0.001
        XFMWeight = 0.001
        xtol = 1e-4

    # Optimization algortihm -- this is where everything culminates together
    a = 10.0
    args = (N, TVWeight, XFMWeight, data, k, strtag, ph, dirWeight, dirs, M, nmins, wavelet, mode, a)
    im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun, options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': alpha_0, 'c': 0.6, 'xtol': xtol, 'TVWeight': TVWeight, 'XFMWeight': XFMWeight, 'N': N})
    im_res = im_result['x'].reshape(N)
    
    plt.imshow(im_res,clim=(minval,maxval),interpolation='bilinear')
    plt.title("Reconstructed Image with %d%% Sampling and im_dc==" % (pctg*100) + imdcs)
    plt.show()
    
    
    if imdcs == 'densCorr':
        saveFig.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_firstRun_im_dc_" % (pctg*100) + imdcs)
        np.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_firstRun_im_dc_" % (pctg*100) + imdcs,im_res)
    elif imdcs == 'densCorr_Completed':
        saveFig.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_secondRun_im_dc_TVXFM_0.001" % (pctg*100) + imdcs)
        np.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_secondRun_im_dc_TVXFM_0.001" % (pctg*100) + imdcs,im_res)

#lrLoc = int(np.ceil((294-np.ceil(294/np.sqrt(1/pctg)))/2))
#im_lr = tf.fft2c(np.fft.fftshift(np.fft.fftshift(tf.ifft2c(im,np.ones(im.shape)))[lrLoc:-lrLoc,lrLoc:-lrLoc]),np.ones(im[lrLoc:-lrLoc,lrLoc:-lrLoc].shape))
#plt.imshow(abs(im_lr))
#plt.title('Low Resolution Equivalent with only %.2f%% of k-space Sampled' % pctg)
#saveFig.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/TV%.2f_XFM%.2f/%.2fper_result_im_lr" % (TVWeight, XFMWeight, pctg))
            minval = np.min(im)
            maxval = np.max(im)
            # Primary first guess. What we're using for now. Density corrected
            #im_dc = tf.ifft2c(data / np.fft.ifftshift(pdf), ph=ph).real.flatten().copy()
            for imdcs in ['zeros','ones','densCorr','imFull']:
                if imdcs == 'zeros':
                    im_dc = np.zeros(data.shape)
                elif imdcs == 'ones':
                    im_dc = np.ones(data.shape)
                elif imdcs == 'densCorr':
                    im_dc = tf.ifft2c(data / np.fft.ifftshift(pdf), ph=ph).real.flatten().copy()
                elif imdcs == 'imFull':
                    im_dc = im
                
                # Optimization algortihm -- this is where everything culminates together
                a = 10.0
                args = (N, TVWeight, XFMWeight, data, k, strtag, ph, dirWeight, dirs, M, nmins, wavelet, mode, a)
                im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                                        options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': 0.1, 'c': 0.6, 'xtol': 5e-3, 'TVWeight': TVWeight, 'XFMWeight': XFMWeight, 'N': N})
                im_res = im_result['x'].reshape(N)
                plt.imshow(abs(im_res),clim=(minval,maxval))
                plt.title("Reconstructed Image with %.2f%% Sampling and im_dc==" % pctg + imdcs)
                saveFig.save("sheppLoganData/TV%s_XFM%s/%.2fper_result_im_dc_" % (float('%.1g' % TVWeight), float('%.1g' % XFMWeight) , pctg) + imdcs)
                np.save("sheppLoganData/TV%s_XFM%s/%.2fper_result_im_dc_" % (float('%.1g' % TVWeight), float('%.1g' % XFMWeight) , pctg) + imdcs + ".npy" ,im_res)

    lrLoc = int(np.ceil((N[0]-np.ceil(N[0]/np.sqrt(1/pctg)))/2))
    im_lr = tf.fft2c(np.fft.fftshift(np.fft.fftshift(tf.ifft2c(im,np.ones(im.shape)))[lrLoc:-lrLoc,lrLoc:-lrLoc]),np.ones(im[lrLoc:-lrLoc,lrLoc:-lrLoc].shape))
    plt.imshow(abs(im_lr))
    plt.title('Low Resolution Equivalent with only %.2f%% of k-space Sampled' % pctg)
    saveFig.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/TV%.2f_XFM%.2f/%.2fper_result_im_lr" % (TVWeight, XFMWeight, pctg))
    np.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/TV%.2f_XFM%.2f/%.2fper_result_im_lr" % (TVWeight, XFMWeight, pctg) + ".npy", im_lr)
Пример #7
0
                                             'gtol': 0.01,
                                             'disp': 1,
                                             'alpha_0': 0.1,
                                             'c': 0.6,
                                             'xtol': 5e-3,
                                             'TVWeight': TVWeight,
                                             'XFMWeight': XFMWeight,
                                             'N': N
                                         })
                im_res = im_result['x'].reshape(N)
                plt.imshow(abs(im_res), clim=(minval, maxval))
                plt.title(
                    "Reconstructed Image with %.2f%% Sampling and im_dc==" %
                    pctg + imdcs)
                saveFig.save(
                    "sheppLoganData/TV%s_XFM%s/%.2fper_result_im_dc_" %
                    (float('%.1g' % TVWeight), float('%.1g' % XFMWeight),
                     pctg) + imdcs)
                np.save(
                    "sheppLoganData/TV%s_XFM%s/%.2fper_result_im_dc_" %
                    (float('%.1g' % TVWeight), float('%.1g' % XFMWeight), pctg)
                    + imdcs + ".npy", im_res)

    lrLoc = int(np.ceil((N[0] - np.ceil(N[0] / np.sqrt(1 / pctg))) / 2))
    im_lr = tf.fft2c(
        np.fft.fftshift(
            np.fft.fftshift(tf.ifft2c(im, np.ones(im.shape)))[lrLoc:-lrLoc,
                                                              lrLoc:-lrLoc]),
        np.ones(im[lrLoc:-lrLoc, lrLoc:-lrLoc].shape))
    plt.imshow(abs(im_lr))
    plt.title('Low Resolution Equivalent with only %.2f%% of k-space Sampled' %
              pctg)
for i in range(4):
    clims.append([0,1])
vis.figSubplots([abs(im[0]),
                 im_scan[0].real,
                 im_scanComb[0].real,
                 im_scanDir[0].real,
                 im_scanDirComb[0].real,
                 k[0],
                 kDir[0],
                 kComb[0],
                 kDirComb[0]],
                 clims=clims,
                 titles=['Original','Var Dens','Var Dens Comb','Uni Samp','Uni Samp Comb','Var Dens k','Combo Dens k','Var Dens Shared k','Combo Dens Shared k'],colorbar=False)

#plt.show()
saveFig.save('tests/directionTests/phantomSmoothed_teamWithVarDens')


plt.figure(figsize=(24,13.5))
plt.subplot(2,2,1)
samp.radialHistogram(k[0],rmax=1)
plt.title('Radial Histogram Var Dens')
plt.subplot(2,2,2)
samp.radialHistogram(kDir[0],rmax=1)
plt.title('Radial Histogram Combo Dens')
plt.subplot(2,2,3)
samp.radialHistogram(kComb[0],rmax=1)
plt.title('Radial Histogram Var Dens Shared')
plt.subplot(2,2,4)
samp.radialHistogram(kDirComb[0],rmax=1)
plt.title('Radial Histogram Combo Dens Shared')
Пример #9
0
                                 'c': 0.6,
                                 'xtol': xtol,
                                 'TVWeight': TVWeight,
                                 'XFMWeight': XFMWeight,
                                 'N': N
                             })
    im_res = im_result['x'].reshape(N)

    plt.imshow(im_res, clim=(minval, maxval), interpolation='bilinear')
    plt.title("Reconstructed Image with %d%% Sampling and im_dc==" %
              (pctg * 100) + imdcs)
    plt.show()

    if imdcs == 'densCorr':
        saveFig.save(
            "brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_firstRun_im_dc_"
            % (pctg * 100) + imdcs)
        np.save(
            "brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_firstRun_im_dc_"
            % (pctg * 100) + imdcs, im_res)
    elif imdcs == 'densCorr_Completed':
        saveFig.save(
            "brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_secondRun_im_dc_TVXFM_0.001"
            % (pctg * 100) + imdcs)
        np.save(
            "brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/replicate/seed1000_%.2fper_secondRun_im_dc_TVXFM_0.001"
            % (pctg * 100) + imdcs, im_res)

#lrLoc = int(np.ceil((294-np.ceil(294/np.sqrt(1/pctg)))/2))
#im_lr = tf.fft2c(np.fft.fftshift(np.fft.fftshift(tf.ifft2c(im,np.ones(im.shape)))[lrLoc:-lrLoc,lrLoc:-lrLoc]),np.ones(im[lrLoc:-lrLoc,lrLoc:-lrLoc].shape))
#plt.imshow(abs(im_lr))
Пример #10
0
def runCSAlgorithm(
        fromfid=False,
        filename='/home/asalerno/Documents/pyDirectionCompSense/brainData/P14/data/fullySampledBrain.npy',
        sliceChoice=150,
        strtag=['', 'spatial', 'spatial'],
        xtol=[1e-2, 1e-3, 5e-4, 5e-4],
        TV=[0.01, 0.005, 0.002, 0.001],
        XFM=[0.01, .005, 0.002, 0.001],
        dirWeight=0,
        pctg=0.25,
        radius=0.2,
        P=2,
        pft=False,
        ext=0.5,
        wavelet='db4',
        mode='per',
        method='CG',
        ItnLim=30,
        lineSearchItnLim=30,
        alpha_0=0.6,
        c=0.6,
        a=10.0,
        kern=np.array([[[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]],
                       [[0., 0., 0.], [0., -1., 0.], [0., 1., 0.]],
                       [[0., 0., 0.], [0., -1., 1.], [0., 0., 0.]]]),
        dirFile=None,
        nmins=None,
        dirs=None,
        M=None,
        dirInfo=[None] * 4,
        saveNpy=False,
        saveNpyFile=None,
        saveImsPng=False,
        saveImsPngFile=None,
        saveImDiffPng=False,
        saveImDiffPngFile=None,
        disp=False):
    ##import pdb; pdb.set_trace()
    if fromfid == True:
        inputdirectory = filename[0]
        petable = filename[1]
        fullImData = rff.getDataFromFID(petable, inputdirectory, 2)[0, :, :, :]
        fullImData = fullImData / np.max(abs(fullImData))
        im = fullImData[:, :, sliceChoice]
    else:
        im = np.load(filename)[sliceChoice, :, :]

    N = np.array(im.shape)  # image Size

    pdf = samp.genPDF(N[-2:],
                      P,
                      pctg,
                      radius=radius,
                      cyl=np.hstack([1, N[-2:]]),
                      style='mult',
                      pft=pft,
                      ext=ext)
    if pft:
        print('Partial Fourier sampling method used')
    k = samp.genSampling(pdf, 50, 2)[0].astype(int)
    if len(N) == 2:
        N = np.hstack([1, N])
        k = k.reshape(N)
        im = im.reshape(N)
    elif (len(N) == 3) and ('dir' not in strtag):
        k = k.reshape(np.hstack([1, N[-2:]])).repeat(N[0], 0)

    ph_ones = np.ones(N[-2:], complex)
    ph_scan = np.zeros(N, complex)
    data = np.zeros(N, complex)
    im_scan = np.zeros(N, complex)
    for i in range(N[0]):
        k[i, :, :] = np.fft.fftshift(k[i, :, :])
        data[i, :, :] = k[i, :, :] * tf.fft2c(im[i, :, :], ph=ph_ones)

        # IMAGE from the "scanner data"

        im_scan_wph = tf.ifft2c(data[i, :, :], ph=ph_ones)
        ph_scan[i, :, :] = tf.matlab_style_gauss2D(im_scan_wph, shape=(5, 5))
        ph_scan[i, :, :] = np.exp(1j * ph_scan[i, :, :])
        im_scan[i, :, :] = tf.ifft2c(data[i, :, :], ph=ph_scan[i, :, :])
        #im_lr = samp.loRes(im,pctg)

    # ------------------------------------------------------------------ #
    # A quick way to look at the PSF of the sampling pattern that we use #
    delta = np.zeros(N[-2:])
    delta[int(N[-2] / 2), int(N[-1] / 2)] = 1
    psf = tf.ifft2c(tf.fft2c(delta, ph_ones) * k, ph_ones)
    # ------------------------------------------------------------------ #

    ## ------------------------------------------------------------------ #
    ## -- Currently broken - Need to figure out what's happening here. -- #
    ## ------------------------------------------------------------------ #
    #if pft:
    #for i in xrange(N[0]):
    #dataHold = np.fft.fftshift(data[i,:,:])
    #kHold = np.fft.fftshift(k[i,:,:])
    #loc = 98
    #for ix in xrange(N[-2]):
    #for iy in xrange(loc,N[-1]):
    #dataHold[-ix,-iy] = dataHold[ix,iy].conj()
    #kHold[-ix,-iy] = kHold[ix,iy]
    ## ------------------------------------------------------------------ #

    pdfDiv = pdf.copy()
    pdfZeros = np.where(pdf == 0)
    pdfDiv[pdfZeros] = 1
    #im_scan_imag = im_scan.imag
    #im_scan = im_scan.real

    N_im = N.copy()
    hld, dims, dimOpt, dimLenOpt = tf.wt(im_scan[0].real, wavelet, mode)
    N = np.hstack([N_im[0], hld.shape])

    w_scan = np.zeros(N)
    w_full = np.zeros(N)
    im_dc = np.zeros(N_im)
    w_dc = np.zeros(N)

    for i in xrange(N[0]):
        w_scan[i, :, :] = tf.wt(im_scan.real[i, :, :], wavelet, mode, dims,
                                dimOpt, dimLenOpt)[0]
        w_full[i, :, :] = tf.wt(abs(im[i, :, :]), wavelet, mode, dims, dimOpt,
                                dimLenOpt)[0]

        im_dc[i, :, :] = tf.ifft2c(data[i, :, :] / np.fft.ifftshift(pdfDiv),
                                   ph=ph_scan[i, :, :]).real.copy()
        w_dc[i, :, :] = tf.wt(im_dc, wavelet, mode, dims, dimOpt, dimLenOpt)[0]

    w_dc = w_dc.flatten()
    im_sp = im_dc.copy().reshape(N_im)
    minval = np.min(abs(im))
    maxval = np.max(abs(im))
    data = np.ascontiguousarray(data)

    imdcs = [
        im_dc,
        np.zeros(N_im),
        np.ones(N_im),
        np.random.randn(np.prod(N_im)).reshape(N_im)
    ]
    imdcs[-1] = imdcs[-1] - np.min(imdcs[-1])
    imdcs[-1] = imdcs[-1] / np.max(abs(imdcs[-1]))
    mets = [
        'Density Corrected', 'Zeros', '1/2'
        's', 'Gaussian Random Shift (0,1)'
    ]
    wdcs = []
    for i in range(len(imdcs)):
        wdcs.append(
            tf.wt(imdcs[i][0], wavelet, mode, dims, dimOpt,
                  dimLenOpt)[0].reshape(N))

    ims = []
    #print('Starting the CS Algorithm')
    for kk in range(len(wdcs)):
        w_dc = wdcs[kk]
        print(mets[kk])
        for i in range(len(TV)):
            args = (N, N_im, dims, dimOpt, dimLenOpt, TV[i], XFM[i], data, k,
                    strtag, ph_scan, kern, dirWeight, dirs, dirInfo, nmins,
                    wavelet, mode, a)
            w_result = opt.minimize(f,
                                    w_dc,
                                    args=args,
                                    method=method,
                                    jac=df,
                                    options={
                                        'maxiter': ItnLim,
                                        'lineSearchItnLim': lineSearchItnLim,
                                        'gtol': 0.01,
                                        'disp': 1,
                                        'alpha_0': alpha_0,
                                        'c': c,
                                        'xtol': xtol[i],
                                        'TVWeight': TV[i],
                                        'XFMWeight': XFM[i],
                                        'N': N
                                    })
            if np.any(np.isnan(w_result['x'])):
                print('Some nan' 's found. Dropping TV and XFM values')
            elif w_result['status'] != 0:
                print(
                    'TV and XFM values too high -- no solution found. Dropping...'
                )
            else:
                w_dc = w_result['x']

        w_res = w_dc.reshape(N)
        im_res = np.zeros(N_im)
        for i in xrange(N[0]):
            im_res[i, :, :] = tf.iwt(w_res[i, :, :], wavelet, mode, dims,
                                     dimOpt, dimLenOpt)
        ims.append(im_res)

    if saveNpy:
        if saveNpyFile is None:
            np.save('./holdSave_im_res_' + str(int(pctg * 100)) + 'p_all_SP',
                    ims)
        else:
            np.save(saveNpyFile, ims)

    if saveImsPng:
        vis.figSubplots(ims,
                        titles=mets,
                        clims=(minval, maxval),
                        colorbar=True)
        if not disp:
            if saveImsPngFile is None:
                saveFig.save('./holdSave_ims_' + str(int(pctg * 100)) +
                             'p_all_SP')
            else:
                saveFig.save(saveImsPngFile)

    if saveImDiffPng:
        imdiffs, clims = vis.imDiff(ims)
        diffMets = [
            'DC-Zeros', 'DC-Ones', 'DC-Random', 'Zeros-Ones', 'Zeros-Random',
            'Ones-Random'
        ]
        vis.figSubplots(imdiffs, titles=diffMets, clims=clims, colorbar=True)
        if not disp:
            if saveImDiffPngFile is None:
                saveFig.save('./holdSave_im_diffs_' + str(int(pctg * 100)) +
                             'p_all_SP')
            else:
                saveFig.save(saveImDiffPngFile)

    if disp:
        plt.show()
Пример #11
0
    clim.append(np.min(im),np.max(im))
    for j in range(len(TV)):
        for k in range(len(XFM)):
            for m in range(len(lam_trust)):
                imRMSE[i,j,k,m,:,:] = np.load('temp/' + str(int(100*pctg)) + '_slice_' + str(SL[i]) + '_TV_' + str(TV[j]) + '_XFM_' + str(XFM[k]) + '_lamTrust_' + str(int(100*lam_trust[m])) + '.npy')
                rmses[i,j,k,m] = rmse(imRMSE[i,j,k,m,:,:],im)
                

titles = []
for j in range(len(TV)):
    for k in range(len(XFM)):
        titles.append('TV = ' + str(TV[j]) + '   XFM = ' + str(XFM[k]))

        
        
for i in range(len(SL)):
    for m in range(len(lam_trust)):
        labs = ['Slice ' + str(SL[i]) + ' with $\lambda_{trust}$ = ' + str(lam_trust[m]), 'TV', 'XFM']
        vis.figSubplots(np.concatenate(imRMSE[i,:,:,m,:,:],axis=0),titles=titles,labs=labs)
        saveFig.save('/hpf/largeprojects/MICe/asalerno/pyDirectionCompSense/tests/rmseTests/ims_sl_' + str(SL[i]) + '_lamTrust_' + str(lam_trust[m]) + '_allTVXFM')
        fig, ax = plt.subplots()
        img = ax.imshow(rmses[i,:,:,m],cmap='jet',interpolation='None')
        ax.set_title('RMSE: Slice ' + str(SL[i]) + ' $\lambda_{trust}$ = ' + str(lam_trust[m]))
        strTV = ['']
        strXFM = ['']
        [strTV.append(TV[q]) for q in range(len(TV))]
        [strXFM.append(XFM[q]) for q in range(len(XFM))]
        ax.set_xticklabels(strTV)
        ax.set_yticklabels(strXFM)
        fig.colorbar(img)
        saveFig.save('/hpf/largeprojects/MICe/asalerno/pyDirectionCompSense/tests/rmseTests/rmses_sl_' + str(SL[i]) + '_lamTrust_' + str(lam_trust[m]) + '_allTVXFM')
Пример #12
0
            tvStps.append(TV[i])
        
                    
                
    w_res = w_dc.reshape(N)
    im_res = np.zeros(N_im)
    for i in xrange(N[0]):
        im_res[i,:,:] = tf.iwt(w_res[i,:,:],wavelet,mode,dims,dimOpt,dimLenOpt)
    ims.append(im_res)
    
    

data_res = tf.fft2c(im_res,ph_scan)
data_diff = np.fft.fftshift(data_res-data)*k
plt.imshow(abs(data_diff)[0]); plt.colorbar();
saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/phantomKernTests/noise_' + str(int(100*pctg)) + '_ksp_diff_abs')
plt.imshow(data_diff.real[0]); plt.colorbar();
saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/phantomKernTests/noise_' + str(int(100*pctg)) + '_ksp_diff_real')
plt.imshow(data_diff.imag[0]); plt.colorbar();
saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/phantomKernTests/noise_' + str(int(100*pctg)) + '_ksp_diff_imag')


im_stps = np.zeros([len(stps), N_im[-2], N_im[-1]])
gtv = np.zeros([len(stps), N_im[-2], N_im[-1]])
gxfm = np.zeros([len(stps), N_im[-2], N_im[-1]])
gdc = np.zeros([len(stps), N_im[-2], N_im[-1]])
for jj in range(len(stps)):
    im_stps[jj,:,:] = tf.iwt(stps[jj].reshape(N[-2:]),wavelet,mode,dims,dimOpt,dimLenOpt)
    gtv[jj,:,:] = grads.gTV(im_stps[jj,:,:].reshape(N_im),N_im,strtag, kern, 0, a=a)
    gxfm[jj,:,:] = tf.iwt(grads.gXFM(stps[jj].reshape(N[-2:]),a=a),wavelet,mode,dims,dimOpt,dimLenOpt)
    gdc[jj,:,:] = grads.gDataCons(im_stps[jj,:,:], N_im, ph_scan, data, k)
Пример #13
0
            plt.imshow(imgsData[pc,TV,XFM,0,:,:],clim=[minval,maxval])
            ax2.set_title('Recon %.2f%% samp imdc=zeros' % (pctg*100))
            ax3 = fig.add_subplot(2,3,3)
            plt.imshow(imgsData[pc,TV,XFM,1,:,:],clim=(minval,maxval))
            ax3.set_title('Recon %.2f%% samp imdc=ones' % (pctg*100))
            ax4 = fig.add_subplot(2,3,4)
            plt.imshow(abs(im_lr))
            ax4.set_title('Low Res with %.2f%% of Data' % (pctg*100))
            ax5 = fig.add_subplot(2,3,5)
            plt.imshow(imgsData[pc,TV,XFM,2,:,:],clim=(minval,maxval))
            ax5.set_title('Recon %.2f%% samp imdc=densCorr' % (pctg*100))
            ax6 = fig.add_subplot(2,3,6)
            plt.imshow(imgsData[pc,TV,XFM,3,:,:],clim=(minval,maxval))
            ax6.set_title('Recon %.2f%% samp imdc=imFull' % (pctg*100))
            
            saveFig.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/TV%s_XFM%s/%.2fper_im_lr_edit_comparison" % (float('%.1g' % TVWeight), float('%.1g' % XFMWeight), pctg))
        XFM=-1
    TV=-1

    
# Rerunning data comparison
pctg = 0.25
im = np.load('/home/asalerno/Documents/pyDirectionCompSense/brainData/exercise_irradiation/bruker_data/running_C/P14/fullySampledBrain.npy')
N = im.shape
minval = np.min(im)
maxval = np.max(im)

lrLoc = int(np.ceil((N[0]-np.ceil(N[0]/np.sqrt(1/pctg)))/2))
im_lr = tf.fft2c(np.fft.fftshift(np.fft.fftshift(tf.ifft2c(im,np.ones(im.shape)))[lrLoc:-lrLoc,lrLoc:-lrLoc]),np.ones(im[lrLoc:-lrLoc,lrLoc:-lrLoc].shape))

        #----------------#
        #     Step 1     #
        #----------------#
        args = (N, TV1, XFM1, data, k, strtag, ph, dirWeight, dirs, M, nmins, wavelet, mode, a)
        im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                                options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': 0.1, 'c': 0.6, 'xtol': xtol1, 'TVWeight': TV1, 'XFMWeight': XFM1, 'N': N})
        im_dc = im_result['x'].reshape(N)

        #----------------#
        #     Step 2     #
        #----------------#
        args = (N, TV2, XFM2, data, k, strtag, ph, dirWeight, dirs, M, nmins, wavelet, mode, a)
        im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                                options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': 0.1, 'c': 0.6, 'xtol': xtol2, 'TVWeight': TV2, 'XFMWeight': XFM2, 'N': N})
        im_dc = im_result['x'].reshape(N)
        
        #----------------#
        #     Step 3     #
        #----------------#
        args = (N, TV3, XFM3, data, k, strtag, ph, dirWeight, dirs, M, nmins, wavelet, mode, a)
        im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                                options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': 0.1, 'c': 0.6, 'xtol': xtol3, 'TVWeight': TV3, 'XFMWeight': XFM3, 'N': N})
        im_res = im_result['x'].reshape(N)
        
        plt.imshow(abs(im_res),clim=(minval,maxval),interpolation='bilinear')
        plt.title("25% Data -- P=" + str(P) + " -- 3 Rounds")
        plt.xlabel('TV1=XFM1=' + str(TV1) + '   TV2=XFM2=' + str(TV2) + '   TV3=XFM3=' + str(TV3))
        saveFig.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/P_analysis/1_overr_p/seed" + str(int(seeds[sdcnt])) + '/3rounds_P_' + str(P) + '_ph_1')
        
        np.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/P_analysis/1_overr_p/seed" + str(int(seeds[sdcnt])) + "/3rounds_P_" + str(P) + '_ph_1.npy',im_res)
Пример #15
0
    gtv[jj, :, :] = grads.gTV(im_stps[jj, :, :].reshape(N_im),
                              N_im,
                              strtag,
                              kern,
                              0,
                              a=a)
    gxfm[jj, :, :] = tf.iwt(grads.gXFM(stps[jj].reshape(N[-2:]), a=a), wavelet,
                            mode, dims, dimOpt, dimLenOpt)
    gdc[jj, :, :] = grads.gDataCons(im_stps[jj, :, :], N_im, ph_scan, data, k)

for i in xrange(len(stps)):
    plt.imshow(im_stps[i])
    plt.colorbar()
    plt.title('Step with Negative Values')
    saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/gradTests/' +
                 str(int(100 * pctg)) + '_TV_XFM_' + str(TV[i]) + '_0_a_' +
                 str(int(a)) + '_negs')
    vis.figSubplots([im_stps[i], gtv[i], gxfm[i], gdc[i]],
                    titles=['Step', 'gTV', 'gXFM', 'gDC'],
                    clims=[(minval, maxval), (np.min(gtv[i]), np.max(gtv[i])),
                           (np.min(gxfm[i]), np.max(gxfm[i])),
                           (np.min(gdc[i]), np.max(gdc[i]))])
    saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/gradTests/' +
                 str(int(100 * pctg)) + '_TV_XFM_' + str(TV[i]) + '_0_a_' +
                 str(int(a)) + '_grads')
    plt.imshow(TV[i] * gtv[i] + TV[i] * gxfm[i] + gdc[i])
    plt.colorbar()
    plt.title('Total Gradient')
    saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/gradTests/' +
                 str(int(100 * pctg)) + '_TV_XFM_' + str(TV[i]) + '_a_' +
                 str(int(a)) + '_gradTotal')
Пример #16
0
                                 im_dc,
                                 args=args,
                                 method=method,
                                 jac=derivative_fun,
                                 options={
                                     'maxiter': ItnLim,
                                     'gtol': 0.01,
                                     'disp': 1,
                                     'alpha_0': 0.1,
                                     'c': 0.6,
                                     'xtol': xtol3,
                                     'TVWeight': TV3,
                                     'XFMWeight': XFM3,
                                     'N': N
                                 })
        im_res = im_result['x'].reshape(N)

        plt.imshow(abs(im_res),
                   clim=(minval, maxval),
                   interpolation='bilinear')
        plt.title("25% Data -- P=" + str(P) + " -- 3 Rounds")
        plt.xlabel('TV1=XFM1=' + str(TV1) + '   TV2=XFM2=' + str(TV2) +
                   '   TV3=XFM3=' + str(TV3))
        saveFig.save(
            "brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/P_analysis/1_overr_p/seed"
            + str(int(seeds[sdcnt])) + '/3rounds_P_' + str(P) + '_ph_1')

        np.save(
            "brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/P_analysis/1_overr_p/seed"
            + str(int(seeds[sdcnt])) + "/3rounds_P_" + str(P) + '_ph_1.npy',
            im_res)
Пример #17
0
cols = ('b','k','r','g','m','c','y','0.5','0.75',(0.25,0.25,0.75),(1,0.25,0.5))
fig=plt.figure()
strPs = map(str,Ps)
for P in Ps:
    print(P)
    cnt += 1
    plt.plot(rads,pdfmult[cnt,147,:],color=cols[cnt])
    #samp.pltSlice(pdfmult[cnt,:,:],sl=147,rads=rads,col=cols[cnt])
    plt.legend(strPs)
    plt.xlim(-np.sqrt(2),np.sqrt(2))
    plt.ylim(0,1.1)
    plt.xlabel('Radius')
    plt.ylabel('PDF')
    plt.title('PDF using 1/|r|^p')
    
saveFig.save('/micehome/asalerno/Documents/pyDirectionCompSense/brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/pdf/r_-p_method_compared')

cnt = -1
pleg=[]
for P in Ps:
    print(P)
    cnt += 1
    if P>2:
        pleg.append(str(P))
        plt.plot(rads,pdfadd[cnt,147,:],color=cols[cnt])
        #samp.pltSlice(pdfmult[cnt,:,:],sl=147,rads=rads,col=cols[cnt])
        plt.legend(strPs)
        plt.xlim(-np.sqrt(2),np.sqrt(2))
        plt.ylim(0,1.1)
        plt.xlabel('Radius')
        plt.ylabel('PDF')
            w_dc = w_result['x']
            stps.append(w_dc)
            tvStps.append(TV[i])
            
            
    w_res = w_dc.reshape(N)
    im_res = np.zeros(N_im)
    for i in xrange(N[0]):
        im_res[i,:,:] = tf.iwt(w_res[i,:,:],wavelet,mode,dims,dimOpt,dimLenOpt)
    ims.append(im_res)
    
im_stps = np.zeros([len(stps), N_im[-2], N_im[-1]])
gtv = np.zeros([len(stps), N_im[-2], N_im[-1]])
gxfm = np.zeros([len(stps), N_im[-2], N_im[-1]])
gdc = np.zeros([len(stps), N_im[-2], N_im[-1]])
for jj in range(len(stps)):
    im_stps[jj,:,:] = tf.iwt(stps[jj].reshape(N[-2:]),wavelet,mode,dims,dimOpt,dimLenOpt)
    gtv[jj,:,:] = grads.gTV(im_stps[jj,:,:].reshape(N_im),N_im,strtag, kern, 0, a=a)
    gxfm[jj,:,:] = tf.iwt(grads.gXFM(stps[jj].reshape(N[-2:]),a=a),wavelet,mode,dims,dimOpt,dimLenOpt)
    gdc[jj,:,:] = grads.gDataCons(im_stps[jj,:,:], N_im, ph_scan, data, k)
    

    
for i in xrange(len(stps)):
    vis.figSubplots([im_stps[i],gtv[i],gxfm[i],gdc[i]],titles=['Step','gTV','gXFM','gDC'])
    saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/gradTests/'+ str(int(100*pctg)) + '_TV_XFM_'+ str(TV[i]) +'_grads')
    plt.imshow(TV[i]*gtv[i] + TV[i]*gxfm[i] + gdc[i])
    plt.colorbar()
    plt.title('Total Gradient')
    saveFig.save('/home/asalerno/Documents/pyDirectionCompSense/gradTests/'+ str(int(100*pctg)) + '_TV_XFM_'+ str(TV[i]) +'_gradTotal')
Пример #19
0
#----------------#
args = (N, TV3, XFM3, data, k, strtag, ph_scan, dirWeight, dirs, M, nmins, wavelet, mode, a)
im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                        options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': c*alpha_k, 'c': c, 'xtol': xtol3, 'TVWeight': TV3, 'XFMWeight': XFM3, 'N': N})
im_dc = im_result['x'].reshape(N)
alpha_k = im_result['alpha_k']

#----------------#
#     Step 4     #
#----------------#
args = (N, TV4, XFM4, data, k, strtag, ph_scan, dirWeight, dirs, M, nmins, wavelet, mode, a)
im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                        options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': c*alpha_k, 'c': c, 'xtol': xtol4, 'TVWeight': TV4, 'XFMWeight': XFM4, 'N': N})
im_dc = im_result['x'].reshape(N)
alpha_k = im_result['alpha_k']

#----------------#
#     Step 5     #
#----------------#
args = (N, TV5, XFM5, data, k, strtag, ph_scan, dirWeight, dirs, M, nmins, wavelet, mode, a)
im_result = opt.minimize(optfun, im_dc, args=args, method=method, jac=derivative_fun,
                        options={'maxiter': ItnLim, 'gtol': 0.01, 'disp': 1, 'alpha_0': c*alpha_k, 'c': c, 'xtol': xtol5, 'TVWeight': TV5, 'XFMWeight': XFM5, 'N': N})
im_res = im_result['x'].reshape(N)

plt.imshow(abs(im_res),clim=(minval,maxval),interpolation='bilinear')
plt.title("25% Data -- P=" + str(P) + " -- 5 Rounds")
plt.xlabel('TV=XFM= [' + str(TV1) + ', ' +  str(TV2) + ', ' + str(TV3) + ', ' + str(TV4) + ', ' + str(TV5) + ']')
#plt.show()
saveFig.save("brainData/P14/5rounds_P_" + str(P) + '_pctg_' + str(pctg) + '_sl_' + str(sliceChoice))

#np.save("brainData/exercise_irradiation/bruker_data/running_C/P14/rad_0.1/P_analysis/3rounds_P_" + str(P) + '.npy',im_res)