def mnist_binary_inducing_experiment(method, components, sparsity_factor, run_id, image=None, n_threads=1, partition_size=3000, optimize_stochastic=False): """ Run the binary mnist experiment with inducing point learning. Parameters ---------- method : str The method under which to run the experiment (mix1, mix2, or full). sparsity_factor : float The sparsity of inducing points. run_id : int The id of the configuration. """ name = 'mnist_binary' data = data_source.mnist_binary_data()[run_id - 1] kernel = [ ExtRBF(data['train_inputs'].shape[1], variance=11, lengthscale=np.array((9., )), ARD=False) ] cond_ll = likelihood.LogisticLL() transform = data_transformation.IdentityTransformation( data['train_inputs'], data['train_outputs']) return run_model.run_model(data['train_inputs'], data['train_outputs'], data['test_inputs'], data['test_outputs'], cond_ll, kernel, method, components, name, data['id'], sparsity_factor, transform, False, False, optimization_config={ 'mog': 60, 'hyp': 15, 'inducing': 6 }, max_iter=9, n_threads=n_threads, ftol=10, model_image_dir=image, partition_size=partition_size, optimize_stochastic=optimize_stochastic)
def wisconsin_experiment(method, components, sparsity_factor, run_id, optimize_stochastic=False): """ Run the wisconsin experiment. Parameters ---------- method : str The method under which to run the experiment (mix1, mix2, or full). sparsity_factor : float The sparsity of inducing points. run_id : int The id of the configuration. """ name = 'breast_cancer' data = data_source.wisconsin_breast_cancer_data()[run_id - 1] kernel = get_kernels(data['train_inputs'].shape[1], 1, False) cond_ll = likelihood.LogisticLL() transform = data_transformation.IdentityTransformation( data['train_inputs'], data['train_outputs']) return run_model.run_model(data['train_inputs'], data['train_outputs'], data['test_inputs'], data['test_outputs'], cond_ll, kernel, method, components, name, data['id'], sparsity_factor, transform, True, False, optimization_config={ 'mog': 25, 'hyp': 25 }, max_iter=200)