data[R_rs_k].unit = 1 / u.steradian data.rename_column(R_rs_k, f"R_rs_{wavelength:.4f}") Ed = data[f"Lw_{wavelength:.4f}"] / data[f"R_rs_{wavelength:.4f}"] Ed.name = f"Ed_{wavelength:.4f}" Ed.unit = u.watt / (u.m**2 * u.nm * u.steradian) data.add_column(Ed) # Remove columns commonly missing data wavelengths, Ed = split_spectrum(data, "Ed") for wavelength in wavelengths[np.where((wavelengths < 371) | (wavelengths > 734))]: data.remove_columns(get_keys_with_label(data, f"_{wavelength:.4f}")) # Remove columns with noisy data wavelengths, Ed = split_spectrum(data, "Ed") for wavelength in wavelengths[np.where(wavelengths > 685)]: data.remove_columns(get_keys_with_label(data, f"_{wavelength:.4f}")) # Remove rows that still miss data remove_rows_based_on_threshold(data, "R_rs", "<", -900) # Remove outliers with R_rs > 0.02 remove_rows_based_on_threshold(data, "R_rs", ">", 0.02) map_data(data, data_label="TAOM", projection="gnom", lat_0=0, lon_0=-155, llcrnrlon=-185, urcrnrlon=-125, llcrnrlat=-30, urcrnrlat=30, resolution="h", parallels=np.arange(-30, 40, 10), meridians=np.arange(-190, -120, 10)) plot_spectra(data, data_label="TAOM", alpha=0.5) write_data(data, label="TAOM")
data.remove_columns(get_keys_with_label(data, "Lu")) data.rename_column("lat", "Latitude") data.rename_column("lon", "Longitude") rename_columns(data, "Ed", "Ed_") rename_columns(data, "Rrs", "R_rs_") convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) map_data(data, data_label="SABOR-H", projection="gnom", lat_0=37, lon_0=-70, llcrnrlon=-77, urcrnrlon=-64, llcrnrlat=35, urcrnrlat=43, resolution="h", parallels=np.arange(32, 45, 2), meridians=np.arange(-80, -60, 2)) plot_spectra(data, data_label="SABOR-H", alpha=0.5) write_data(data, label="SABOR-H")
files = list(folder.glob("Tara_HyperPro*.txt")) data = table.vstack([read(file, data_start=35) for file in files]) header = read(files[0], data_start=32, data_end=33) header["col1"][0] = "year" header = header[0].as_void() for key, new_key in zip(data.keys(), header): data.rename_column(key, new_key) data.remove_columns(get_keys_with_label(data, "LU")) data.rename_column("lat", "Latitude") data.rename_column("lon", "Longitude") rename_columns(data, "ES", "Ed_", exclude="None") rename_columns(data, "Rrs", "R_rs_", exclude="None") convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) map_data(data, data_label="TaraO", lon_0=0, resolution="i") plot_spectra(data, data_label="TaraO", alpha=0.1) write_data(data, label="TaraO")
# Remove rows where Ed_405 is abnormally low compared to Ed_400 diff = data["Ed_400"] - data["Ed_405"] remove_indices = np.where(diff > 0.01)[0] data.remove_rows(remove_indices) print( f"Removed {len(remove_indices)} rows where Ed(400 nm) - Ed(405 nm) > 0.01") remove_negative_R_rs(data) map_data(data, data_label="SOP4", projection='gnom', lat_0=56, lon_0=5, llcrnrlon=-2, urcrnrlon=11, llcrnrlat=52, urcrnrlat=59, resolution="h", parallels=np.arange(40, 70, 2), meridians=np.arange(-20, 20, 2)) plot_spectra(data, data_label="SOP4", alpha=0.05) data.remove_columns([ "Latitude_1", "Longitude_1", "Altitude [m]_1", "Latitude_2", "Longitude_2", "Altitude [m]_2" ]) write_data(data, "SOP4")
data = table.vstack(tabs) convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) # Remove bad Ed row remove_rows_based_on_threshold(data, "Ed", ">", 10) remove_negative_R_rs(data) map_data(data, data_label="SMF-A", projection='gnom', lat_0=30, lon_0=-83, llcrnrlon=-89, urcrnrlon=-77, llcrnrlat=24, urcrnrlat=32, resolution="h", parallels=np.arange(24, 36, 2), meridians=np.arange(-90, -70, 2)) plot_spectra(data, data_label="SMF-A", alpha=0.2) write_data(data, label="SMF-A")
R_rs_keys = get_keys_with_label(data, "R_rs") for R_rs_k in zip(R_rs_keys): # Convert R_w to R_rs data[R_rs_k] = data[R_rs_k] / np.pi data = add_Lw_from_Ed_Rrs(data) remove_negative_R_rs(data) map_data(data, data_label="SeaSWIR-R", projection='merc', lat_0=10, lon_0=-30, llcrnrlon=-60, urcrnrlon=7, llcrnrlat=-38, urcrnrlat=55, resolution="i", figsize=(5, 10), parallels=np.arange(-40, 60, 10), meridians=np.arange(-60, 20, 10)) plot_spectra(data, data_label="SeaSWIR-R", alpha=0.05) data.remove_columns([ "Event_1", "Event_2", "Campaign_1", "Campaign_2", "Station_1", "Station_2" ]) write_data(data, label="SeaSWIR-R")
dtype = [int, "S8", float, float] + 2 * [float for wvl in wavelengths] tab = table.Table(rows=[[date, time, lat, lon, *Ed, *Rrs]], names=cols, dtype=dtype) tabs.append(tab) data = table.vstack(tabs) convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) map_data(data, data_label="SFP", projection='gnom', lat_0=25, lon_0=-81, llcrnrlon=-87, urcrnrlon=-75, llcrnrlat=20, urcrnrlat=29, resolution="h", parallels=np.arange(20, 35, 2), meridians=np.arange(-90, -70, 2)) plot_spectra(data, data_label="SFP", alpha=0.1) write_data(data, label="SFP")
for file in files: for skiprows in range(40, 52): try: wavelengths, Ed, Rrs = np.loadtxt(file, skiprows=skiprows, unpack=True, usecols=[0,3,5]) except Exception: continue else: break date, time, lon, lat = find_auxiliary_information_seabass(file) cols = ["Date", "Time", "Latitude", "Longitude"] + [f"Ed_{wvl:.0f}" for wvl in wavelengths] + [f"R_rs_{wvl:.0f}" for wvl in wavelengths] dtype = [int, "S8", float, float] + 2 * [float for wvl in wavelengths] tab = table.Table(rows=[[date, time, lat, lon, *Ed, *Rrs]], names=cols, dtype=dtype) tabs.append(tab) data = table.vstack(tabs) convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) remove_negative_R_rs(data) map_data(data, data_label="ORINOCO", projection='gnom', lat_0=10.5, lon_0=-64.67, llcrnrlon=-70, urcrnrlon=-59, llcrnrlat=5, urcrnrlat=15, resolution="h", parallels=np.arange(4, 16, 2), meridians=np.arange(-70, -56, 2)) plot_spectra(data, data_label="ORINOCO", alpha=0.1) write_data(data, label="ORINOCO")
names=cols, dtype=dtype) tabs.append(tab) data = table.vstack(tabs) convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) remove_negative_R_rs(data) map_data(data, data_label="CLT-A", projection='gnom', lat_0=36.9, lon_0=-75.8, llcrnrlon=-80, urcrnrlon=-70, llcrnrlat=32, urcrnrlat=42, resolution="h", parallels=np.arange(30, 45, 2), meridians=np.arange(-80, -70, 2)) plot_spectra(data, data_label="CLT-A", alpha=0.2) write_data(data, label="CLT-A")
folder = Path("data/AS11/") files = list(folder.glob("AS*HTSRB.csv")) tabs = [] for file in files: wavelengths, Lw, Es, Rrs = np.loadtxt(file, delimiter=",", skiprows=43, unpack=True, usecols=[0,1,3,4]) date, time, lon, lat = find_auxiliary_information_seabass(file) cols = ["Date", "Time", "Latitude", "Longitude"] + [f"Lw_{wvl:.2f}" for wvl in wavelengths] + [f"Ed_{wvl:.2f}" for wvl in wavelengths] + [f"R_rs_{wvl:.2f}" for wvl in wavelengths] dtype = [int, "S8", float, float] + 3 * [float for wvl in wavelengths] tab = table.Table(rows=[[date, time, lat, lon, *Lw, *Es, *Rrs]], names=cols, dtype=dtype) tabs.append(tab) data = table.vstack(tabs) print(f"Original N = {len(data)}") convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "Lw", u.microwatt / (u.centimeter**2 * u.nanometer * u.steradian), u.watt / (u.meter**2 * u.nanometer * u.steradian)) convert_to_unit(data, "R_rs", 1 / u.steradian) remove_negative_R_rs(data) map_data(data, data_label="AS11", projection="gnom", lat_0=21, lon_0=68, llcrnrlon=65, urcrnrlon=71, llcrnrlat=18, urcrnrlat=24, resolution="h", parallels=np.arange(16, 30, 2), meridians=np.arange(66, 72, 2)) plot_spectra(data, data_label="AS11", alpha=0.7) write_data(data, label="AS11")
data.remove_columns(get_keys_with_label(data, "LU")) data.rename_column("lat", "Latitude") data.rename_column("lon", "Longitude") rename_columns(data, "ES", "Ed_", exclude="None") rename_columns(data, "Rrs", "R_rs_", exclude="None") convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) map_data(data, data_label="TaraM", projection="gnom", lat_0=43.5, lon_0=19, llcrnrlon=0, urcrnrlon=40, llcrnrlat=30, urcrnrlat=44, resolution="h", parallels=np.arange(30, 50, 2.5), meridians=np.arange(0, 45, 5)) plot_spectra(data, data_label="TaraM", alpha=0.1) write_data(data, label="TaraM")
from sba.plotting import plot_spectra, map_data from sba.io import read, write_data from sba.data_processing import convert_to_unit, rename_columns, add_Lw_from_Ed_Rrs Ed = read("data/HE302/HE302_irrad.tab", data_start=186, header_start=185) Rrs = read("data/HE302/HE302_rrs.tab", data_start=186, header_start=185) data = table.join(Ed, Rrs, keys=["Event"]) rename_columns(data, "Ed", "Ed", strip=True) rename_columns(data, "Rrs", "R_rs", strip=True) convert_to_unit(data, "Ed", u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) remove_indices = [i for i, row in enumerate(data) if row["R_rs_800"] >= 0.003] data.remove_rows(remove_indices) print(f"Removed {len(remove_indices)} rows with values of R_rs(800 nm) >= 0.003") for key in ["Date/Time", "Latitude", "Longitude", "Altitude [m]"]: data.rename_column(f"{key}_1", key) data.remove_column(f"{key}_2") map_data(data, data_label="HE302", projection='gnom', lat_0=55, lon_0=0, llcrnrlon=-10, urcrnrlon=11, llcrnrlat=50.5, urcrnrlat=59.5, resolution="h", parallels=np.arange(40, 70, 2), meridians=np.arange(-20, 20, 2)) plot_spectra(data, data_label="HE302", alpha=0.15) write_data(data, label="HE302")
remove_indices = [ i for i, row in enumerate(combined_table) if row["R_rs_400"] < 0 or row["R_rs_800"] >= 0.003 ] combined_table.remove_rows(remove_indices) print( f"Removed {len(remove_indices)} rows with values of R_rs(400 nm) < 0 or R_rs(800 nm) >= 0.003" ) map_data(combined_table, data_label="MSM213-R", projection='gnom', lat_0=66, lon_0=-40.5, llcrnrlon=-53, urcrnrlon=-12, llcrnrlat=58, urcrnrlat=70.5, resolution="h", parallels=np.arange(55, 75, 5), meridians=np.arange(-60, -5, 5)) plot_spectra(combined_table, data_label="MSM213-R", alpha=0.05) combined_table.remove_columns([ "Latitude_1", "Longitude_1", "Altitude [m]_1", "Latitude_2", "Longitude_2", "Altitude [m]_2" ]) write_data(combined_table, label="MSM213-R")
tabs = [] for file in files: try: wavelengths, Es, Rrs = np.loadtxt(file, delimiter="\t", skiprows=40, unpack=True, usecols=[0,1,5]) except: wavelengths, Es, Rrs = np.loadtxt(file, delimiter="\t", skiprows=41, unpack=True, usecols=[0,1,5]) date, time, lon, lat = find_auxiliary_information_seabass(file) cols = ["Date", "Time", "Latitude", "Longitude"] + [f"Ed_{wvl:.0f}" for wvl in wavelengths] + [f"R_rs_{wvl:.0f}" for wvl in wavelengths] dtype = [int, "S8", float, float] + 2 * [float for wvl in wavelengths] tab = table.Table(rows=[[date, time, lat, lon, *Es, *Rrs]], names=cols, dtype=dtype) tabs.append(tab) data = table.vstack(tabs) convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) for wavelength in np.arange(712, 722, 2, dtype=int): data.remove_columns(get_keys_with_label(data, f"_{wavelength}")) map_data(data, data_label="GasEx", projection='gnom', lat_0=-52, lon_0=-38, llcrnrlon=-60, urcrnrlon=-30, llcrnrlat=-60, urcrnrlat=-35, resolution="h", parallels=np.arange(-60, -20, 5), meridians=np.arange(-60, -10, 5)) plot_spectra(data, data_label="GasEx", alpha=0.2) write_data(data, label="GasEx")