Пример #1
0
def test_clamp_sid():
    r = load_model(MODEL_REPRESSILATOR)

    # Perform clamping
    r_clamp = clamp_species(r, sids=["X"], boundary_condition=True)
    assert r_clamp
    assert isinstance(r_clamp, roadrunner.RoadRunner)
def test_plotting():
    r = load_model(MODEL_REPRESSILATOR)
    simulator = Simulator(MODEL_REPRESSILATOR)

    changeset = ChangeSet.parameter_sensitivity_changeset(r, sensitivity=0.5)
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=400, steps=400),
        ]), changeset)
    result = simulator.timecourses(tcsims)

    # create figure
    fig, (ax1) = plt.subplots(nrows=1, ncols=1, figsize=(5, 5))
    fig.subplots_adjust(wspace=0.3, hspace=0.3)

    add_line(ax=ax1, data=result, xid='time', yid="X", label="X")
    add_line(ax=ax1,
             data=result,
             xid='time',
             yid="Y",
             label="Y",
             color="darkblue")

    ax1.legend()
    plt.show()
Пример #3
0
def run_sensitivity():
    """ Parameter sensitivity simulations.

    :return:
    """
    simulator = Simulator(MODEL_REPRESSILATOR)

    # parameter sensitivity
    # FIXME: make work with parallel
    r = load_model(MODEL_REPRESSILATOR)
    changeset = ChangeSet.parameter_sensitivity_changeset(r)
    tc_sim = TimecourseSim([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0,
                   end=200,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": True
                   }}),
        Timecourse(start=0,
                   end=100,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": False
                   }}),
    ])
    tc_sims = ensemble(tc_sim, changeset=changeset)
    result = simulator.timecourses(tc_sims)

    # create figure
    fig, (ax1) = plt.subplots(nrows=1, ncols=1, figsize=(5, 5))
    fig.subplots_adjust(wspace=0.3, hspace=0.3)

    add_line(ax=ax1, data=result, xid='time', yid="X", label="X")
    add_line(ax=ax1,
             data=result,
             xid='time',
             yid="Y",
             label="Y",
             color="darkblue")
    add_line(ax=ax1,
             data=result,
             xid='time',
             yid="Z",
             label="Z",
             color="darkorange")

    ax1.legend()
    plt.show()
Пример #4
0
        ax.plot(x,
                data.mean[yid],
                '-',
                color=color,
                label="sim {}".format(label))
    else:
        x = data[xid] * xf
        ax.plot(x, data[yid], '-', color=color, label="sim {}".format(label))


if __name__ == "__main__":
    from sbmlsim.tests.constants import MODEL_REPRESSILATOR
    from sbmlsim.model import load_model
    from sbmlsim.parametrization import ChangeSet
    from sbmlsim.simulation_serial import TimecourseSimulation, Timecourse, timecourses
    r = load_model(MODEL_REPRESSILATOR)

    # parameter sensitivity
    changeset = ChangeSet.parameter_sensitivity_changeset(r, sensitivity=0.05)
    tc_sims = TimecourseSimulation([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0,
                   end=200,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": True
                   }}),
        Timecourse(start=0,
                   end=100,
                   steps=100,
                   model_changes={"boundary_condition": {
Пример #5
0
def test_species_df():
    r = load_model(MODEL_REPRESSILATOR)
    df = species_df(r)
    assert df is not None
    assert "sid" in df
Пример #6
0
def test_parameter_df():
    r = load_model(MODEL_REPRESSILATOR)
    df = parameter_df(r)

    assert df is not None
    assert "sid" in df
Пример #7
0
 def __init__(self, path, selections: List[str] = None):
     self.r = load_model(path=path, selections=selections)
Пример #8
0
    changes_init = pkpd.init_concentrations_changes(r, 'som', 0E-6)  # [0 nmol/L]
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=60, steps=120, changes=changes_init),
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 10.0E-6}),  # [mg/min],
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 20.0E-6}),  # [mg/min],
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 40.0E-6}),  # [mg/min],
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 80.0E-6}),  # [mg/min],
        ]), ChangeSet.parameter_sensitivity_changeset(r, 0.1)
    )
    return simulator.timecourses(tcsims)


if __name__ == "__main__":
    import sys
    r = load_model(MODEL_GLCWB)
    simulator = Simulator(MODEL_GLCWB)
    results = {}
    for f_simulate in [po_bolus, iv_bolus, iv_infusion, clamp, mix, stepped_clamp]:
        f_key = f_simulate.__name__
        print(f_key)
        result = f_simulate(simulator, r)
        print(result)
        print("results:", len(result), sys.getsizeof(result))
        results[f_key] = result

    for key, result in results.items():
        somatostatin_plot(result, title=key)
        plt.show()

    import ray