elif label=='jogging': key = 4. elif label=='running': key = 5. elif label=='walking': key = 6. else: print "[ERROR] WRONG LABEL VALUE : ", label temp = np.hstack((temp, key)) Yte=temp del temp print "[INFO] TRAIN DATA SHAPE : ", Xtr.shape print "[INFO] TEST DATA SHAPE : ", Xte.shape train_set_x, train_set_y=ds.shared_dataset((Xtr, Ytr)); test_set_x, test_set_y=ds.shared_dataset((Xte, Yte)); del Xtr, Xte, Ytr, Yte n_train_batches=train_set_x.get_value(borrow=True).shape[0] n_train_batches=int(np.ceil(n_train_batches/batch_size)) n_test_batches=test_set_x.get_value(borrow=True).shape[0] n_test_batches=int(np.ceil(n_test_batches/batch_size)) print n_train_batches, n_test_batches print "[MESSAGE] The data is loaded" ################################## LAYERWISE MODEL ####################################### X=T.matrix("data")
from scae_destin.cost import categorical_cross_entropy_cost from scae_destin.cost import L2_regularization start_time = time.time() n_epochs = 100 batch_size = 100 nkerns = 100 Xtr, Ytr, Xte, Yte = ds.load_CIFAR10("../cifar-10-batches-py/") Xtr = np.mean(Xtr, 3) Xte = np.mean(Xte, 3) Xtrain = Xtr.reshape(Xtr.shape[0], Xtr.shape[1] * Xtr.shape[2]) / 255.0 Xtest = Xte.reshape(Xte.shape[0], Xte.shape[1] * Xte.shape[2]) / 255.0 train_set_x, train_set_y = ds.shared_dataset((Xtrain, Ytr)) test_set_x, test_set_y = ds.shared_dataset((Xtest, Yte)) n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size print "[MESSAGE] The data is loaded" ################################## FIRST LAYER ####################################### X = T.matrix("data") y = T.ivector("label") idx = T.lscalar() corruption_level = T.fscalar() images = X.reshape((batch_size, 1, 32, 32))
from scae_destin.cost import L2_regularization #def conv(): n_epochs=1 batch_size=100 nkerns=100 Xtr, Ytr, Xte, Yte=ds.load_CIFAR10("../cifar-10-batches-py/") Xtr=np.mean(Xtr, 3) Xte=np.mean(Xte, 3) Xtrain=Xtr.reshape(Xtr.shape[0], Xtr.shape[1]*Xtr.shape[2])/255.0 Xtest=Xte.reshape(Xte.shape[0], Xte.shape[1]*Xte.shape[2])/255.0 train_set_x, train_set_y=ds.shared_dataset((Xtrain, Ytr)) test_set_x, test_set_y=ds.shared_dataset((Xtest, Yte)) n_train_batches=train_set_x.get_value(borrow=True).shape[0]/batch_size n_test_batches=test_set_x.get_value(borrow=True).shape[0]/batch_size print "[MESSAGE] The data is loaded" ################################## FIRST LAYER ####################################### X=T.matrix("data") y=T.ivector("label") idx=T.lscalar() corruption_level=T.fscalar() images=X.reshape((batch_size, 1, 32, 32))