Пример #1
0
    for PERIOD in periods:
        for AVG in avg_to:
            print("computing for %d year period and averaging up to %d" %
                  (PERIOD, 12 * AVG * PERIOD))
            net = ScaleSpecificNetwork(
                '/home/nikola/Work/phd/data/air.mon.mean.levels.nc',
                'air',
                date(1948, 1, 1),
                date(2014, 1, 1),
                None,
                None,
                0,
                'monthly',
                anom=True)
            pool = Pool(WORKERS)
            net.wavelet(PERIOD, get_amplitude=True, pool=pool)
            print "wavelet on data done"
            net.get_filtered_data(pool=pool)
            print "filtered data acquired"
            autocoherence = np.zeros(net.get_spatial_dims())
            job_args = [(i, j, int(AVG * 12 * PERIOD), net.filtered_data[:, i,
                                                                         j])
                        for i in range(net.lats.shape[0])
                        for j in range(net.lons.shape[0])]
            job_result = pool.map(_get_autocoherence, job_args)
            del job_args
            pool.close()
            for i, j, res in job_result:
                autocoherence[i, j] = res
            del job_result
Пример #2
0
    print("computing phase conditioned on NAO")
    nao_phase = load_NAOindex_wavelet_phase(date(1950, 1, 1), date(2014, 1, 1),
                                            period, False)
    net = ScaleSpecificNetwork(
        '/home/nikola/Work/phd/data/air.mon.mean.levels.nc',
        'air',
        date(1950, 1, 1),
        date(2014, 1, 1),
        None,
        None,
        level=0,
        dataset="NCEP",
        sampling='monthly',
        anom=False)
    pool = Pool(WORKERS)
    net.wavelet(period, period_unit="y", pool=pool, cut=2)
    print("wavelet on data done")
    pool.close()
    pool.join()
    net.get_adjacency_matrix_conditioned(nao_phase,
                                         use_queue=True,
                                         num_workers=WORKERS)
    print("estimating adjacency matrix done")
    net.save_net('networks/NCEP-SAT%dy-phase-adjmatCMIEQQcondNAOphase.bin' %
                 (period),
                 only_matrix=True)

    print("computing phase conditioned on NINO")
    nino_phase = load_nino34_wavelet_phase(date(1950, 1, 1), date(2014, 1, 1),
                                           period, False)
    net.get_adjacency_matrix_conditioned(nino_phase,
fname = '/home/nikola/Work/phd/data/air.mon.mean.sig995.nc'
# fname = "/Users/nikola/work-ui/data/air.mon.mean.sig995.nc"

## PHASE FLUCTUATIONS NETWORK L2 dist.
print "Computing L2 distance..."
net = ScaleSpecificNetwork(fname,
                           'air',
                           date(1950, 1, 1),
                           date(2016, 1, 1),
                           None,
                           None,
                           None,
                           'monthly',
                           anom=False)
pool = Pool(20)
net.wavelet(1, 'y', pool=pool, cut=1)
net.get_continuous_phase(pool=pool)
print "wavelet done"
net.get_phase_fluctuations(rewrite=True, pool=pool)
print "fluctuations done"
pool.close()
pool.join()
net.phase_fluctuations -= np.nanmean(net.phase_fluctuations, axis=0)
net.get_adjacency_matrix(net.phase_fluctuations,
                         method="L2",
                         pool=None,
                         use_queue=True,
                         num_workers=20)
net.save_net('networks/NCEP-SATannual-phase-fluctuations-adjmatL2.bin',
             only_matrix=True)
print "L2 done"
Пример #4
0
    date(2016, 1, 1),
    [-60, 0],
    [40, 100],
    level=0,
    dataset="NCEP",
    sampling="monthly",
    anom=False,
)

surrs = SurrogateField()
a = net.get_seasonality(detrend=True)
surrs.copy_field(net)
net.return_seasonality(a[0], a[1], a[2])

pool = Pool(20)
net.wavelet(8, "y", cut=1, pool=pool)
net.get_adjacency_matrix(net.phase, method="MIEQQ", num_workers=0, pool=pool, use_queue=False)
pool.close()
pool.join()

data_adj_matrix = net.adjacency_matrix.copy()

surrs_adj_matrices = []

for i in range(NUM_SURR):
    print("surr %d/%d computing..." % (i + 1, NUM_SURR))
    pool = Pool(20)
    surrs.construct_fourier_surrogates(pool=pool)
    surrs.add_seasonality(a[0], a[1], a[2])

    net.data = surrs.get_surr()
Пример #5
0
for method in METHODS:

    for scale in SCALES:

        print("Computing networks using %s method..." % (method))

        # phase
        if method in ['MIEQQ', 'MIGAU', 'MPC']:
            # net = ScaleSpecificNetwork(fname, 'air', date(1948,1,1), date(2016,1,1), None, None, level = 0, dataset = "NCEP", 
            #         sampling = 'monthly', anom = False)
            net = ScaleSpecificNetwork(fname, 't2m', date(1958,1,1), date(2014,1,1), None, None, level=None, pickled=True,
                        sampling='monthly', anom=False)
            pool = Pool(NUM_WORKERS)
            # net.get_hilbert_phase_amp(period = 90, width = 12, pool = pool, cut = 1)
            net.wavelet(scale, period_unit='m', cut=2, pool=pool)
            pool.close()
            pool.join()
            net.get_adjacency_matrix(net.phase, method = method, pool = None, use_queue = True, num_workers = NUM_WORKERS)
            net.save_net('networks/ERA-SATsurface-scale%dmonths-phase-adjmat%s.bin' % (scale, method), only_matrix = True)

        # amplitude
        if method in ['MIEQQ', 'MIGAU', 'CORR']:
            # net = ScaleSpecificNetwork(fname, 'air', date(1948,1,1), date(2016,1,1), None, None, level = 0, dataset = "NCEP", 
            #         sampling = 'monthly', anom = False)
            net = ScaleSpecificNetwork(fname, 't2m', date(1958,1,1), date(2014,1,1), None, None, level=None, pickled=True,
                        sampling='monthly', anom=False)
            pool = Pool(NUM_WORKERS)
            # net.get_hilbert_phase_amp(period = 90, width = 12, pool = pool, cut = 1)
            net.wavelet(scale, period_unit='m', cut=2, pool=pool)
            pool.close()
import matplotlib.pyplot as plt
import numpy as np

WORKERS = 10 


print "computing SAT wavelet coherence..."
to_do = [['WCOH', 4], ['WCOH', 6], ['WCOH', 8], ['WCOH', 11], ['WCOH', 15]]
for do in to_do:
    METHOD = do[0]
    PERIOD = do[1]
    print("computing for %d period using %s method" % (PERIOD, METHOD))
    net = ScaleSpecificNetwork('/home/nikola/Work/phd/data/air.mon.mean.levels.nc', 'air', 
                       date(1948,1,1), date(2014,1,1), None, None, 0, 'monthly', anom = False)
    pool = Pool(WORKERS)             
    net.wavelet(PERIOD, get_amplitude = False, save_wavelet = True, pool = pool)
    print "wavelet on data done"
    pool.close()
    net.get_adjacency_matrix(net.wave, method = METHOD, pool = None, use_queue = True, num_workers = WORKERS)
    print "estimating adjacency matrix done"
    net.save_net('networks/NCEP-SATsurface-wave-adjmat%s-scale%dyears.bin' % (METHOD, PERIOD), only_matrix = True)



print "computing SATA wavelet coherence..."
to_do = [['WCOH', 4], ['WCOH', 6], ['WCOH', 8], ['WCOH', 11], ['WCOH', 15]]
for do in to_do:
    METHOD = do[0]
    PERIOD = do[1]
    print("computing for %d period using %s method" % (PERIOD, METHOD))
    net = ScaleSpecificNetwork('/home/nikola/Work/phd/data/air.mon.mean.levels.nc', 'air', 
Пример #7
0
#         del job_result

#         with open("networks/NCEP-SATAsurface-autocoherence-phase-scale%dyears-avg-to-%.1f.bin" % (PERIOD, AVG), "wb") as f:
#             cPickle.dump({'autocoherence' : autocoherence, 'lats' : net.lats, 'lons' : net.lons}, f, protocol = cPickle.HIGHEST_PROTOCOL)


if not PLOT:
    ## autocoherence filtered data - SATA
    print "computing autocoherence for SATA filtered data"
    for PERIOD in periods:
        for AVG in avg_to:
            print("computing for %d year period and averaging up to %d" % (PERIOD, 12*AVG*PERIOD))
            net = ScaleSpecificNetwork('/home/nikola/Work/phd/data/air.mon.mean.levels.nc', 'air', 
                                       date(1948,1,1), date(2014,1,1), None, None, 0, 'monthly', anom = True)
            pool = Pool(WORKERS)             
            net.wavelet(PERIOD, get_amplitude = True, pool = pool)
            print "wavelet on data done"
            net.get_filtered_data(pool = pool)
            print "filtered data acquired"
            autocoherence = np.zeros(net.get_spatial_dims())
            job_args = [ (i, j, int(AVG*12*PERIOD), net.filtered_data[:, i, j]) for i in range(net.lats.shape[0]) for j in range(net.lons.shape[0]) ]
            job_result = pool.map(_get_autocoherence, job_args)
            del job_args
            pool.close()
            for i, j, res in job_result:
                autocoherence[i, j] = res
            del job_result

            with open("networks/NCEP-SATAsurface-autocoherence-filtered-scale%dyears-avg-to-%.1f.bin" % (PERIOD, AVG), "wb") as f:
                cPickle.dump({'autocoherence' : autocoherence, 'lats' : net.lats, 'lons' : net.lons}, f, protocol = cPickle.HIGHEST_PROTOCOL)
Пример #8
0
for do in to_do:
    METHOD = do[0]
    PERIOD = do[1]
    print("computing for %d period using %s method" % (PERIOD, METHOD))
    net = ScaleSpecificNetwork(
        '/home/nikola/Work/phd/data/air.mon.mean.levels.nc',
        'air',
        date(1948, 1, 1),
        date(2014, 1, 1),
        None,
        None,
        0,
        'monthly',
        anom=False)
    pool = Pool(WORKERS)
    net.wavelet(PERIOD, get_amplitude=False, save_wavelet=True, pool=pool)
    print "wavelet on data done"
    pool.close()
    net.get_adjacency_matrix(net.wave,
                             method=METHOD,
                             pool=None,
                             use_queue=True,
                             num_workers=WORKERS)
    print "estimating adjacency matrix done"
    net.save_net('networks/NCEP-SATsurface-wave-adjmat%s-scale%dyears.bin' %
                 (METHOD, PERIOD),
                 only_matrix=True)

print "computing SATA wavelet coherence..."
to_do = [['WCOH', 4], ['WCOH', 6], ['WCOH', 8], ['WCOH', 11], ['WCOH', 15]]
for do in to_do:
Пример #9
0
                           date(1948, 1, 1),
                           date(2016, 1, 1),
                           None,
                           None,
                           level=0,
                           dataset="NCEP",
                           sampling='monthly',
                           anom=False)

surrs = SurrogateField()
a = net.get_seasonality(detrend=True)
surrs.copy_field(net)
net.return_seasonality(a[0], a[1], a[2])

pool = Pool(20)
net.wavelet(8, 'y', cut=1, pool=pool)
net.get_adjacency_matrix(net.phase,
                         method="MIEQQ",
                         num_workers=20,
                         pool=None,
                         use_queue=True)
pool.close()
pool.join()

data_adj_matrix = net.adjacency_matrix.copy()

surrs_adj_matrices = []

for i in range(NUM_SURR):
    print("surr %d/%d computing..." % (i + 1, NUM_SURR))
    pool = Pool(20)
Пример #10
0
    g.wavelet(period, period_unit="y", cut=2)

    return g.phase.copy()


WORKERS = 20
to_do_periods = [4, 6, 8, 11, 15]

for period in to_do_periods:
    print("computing phase conditioned on NAO")
    nao_phase = load_NAOindex_wavelet_phase(date(1950,1,1), date(2014,1,1), period, False)
    net = ScaleSpecificNetwork('/home/nikola/Work/phd/data/air.mon.mean.levels.nc', 
                                    'air', date(1950,1,1), date(2014,1,1), None, None, 
                                    level = 0, dataset="NCEP", sampling='monthly', anom=False)
    pool = Pool(WORKERS)             
    net.wavelet(period, period_unit="y", pool=pool, cut=2)
    print("wavelet on data done")
    pool.close()
    pool.join()
    net.get_adjacency_matrix_conditioned(nao_phase, use_queue=True, num_workers=WORKERS)
    print("estimating adjacency matrix done")
    net.save_net('networks/NCEP-SAT%dy-phase-adjmatCMIEQQcondNAOphase.bin' % (period), only_matrix=True)

    print("computing phase conditioned on NINO")
    nino_phase = load_nino34_wavelet_phase(date(1950,1,1), date(2014,1,1), period, False)
    net.get_adjacency_matrix_conditioned(nino_phase, use_queue=True, num_workers=WORKERS)
    print("estimating adjacency matrix done")
    net.save_net('networks/NCEP-SAT%dy-phase-adjmatCMIEQQcondNINOphase.bin' % (period), only_matrix=True)

    print("computing phase conditioned on sunspots")
    sunspot_phase = load_sunspot_number_phase(date(1950,1,1), date(2014,1,1), period, False)
Пример #11
0
                    None,
                    0,
                    "monthly",
                    anom=True,
                )
                if var:
                    net.get_seasonality(det)

                if not var and det:
                    continue

                if c:
                    net.data *= net.latitude_cos_weights()

                pool = Pool(3)
                net.wavelet(per, get_amplitude=True, pool=pool)
                net.get_filtered_data(pool=pool)
                pool.close()

                fname = "filt-data/SATA-1000hPa-filtered%dperiod-%svarnorm-%sdetrend-%scosweighting.bin" % (
                    per,
                    "" if var else "NO",
                    "" if det else "NO",
                    "" if c else "NO",
                )

                with open(fname, "wb") as f:
                    cPickle.dump(
                        {"filt. data": net.filtered_data, "lats": net.lats, "lons": net.lons, "time": net.time},
                        f,
                        protocol=cPickle.HIGHEST_PROTOCOL,
Пример #12
0
 _, nao_ph, sg_nao, a_nao = load_NAOindex_wavelet_phase(date(1950, 1, 1),
                                                        date(2014, 1, 1),
                                                        period,
                                                        anom=False)
 _, nino_ph, sg_nino, a_nino = load_nino34_wavelet_phase(date(1950, 1, 1),
                                                         date(2014, 1, 1),
                                                         period,
                                                         anom=False)
 _, sunspots_ph, sg_sunspots, a_sunspots = load_sunspot_number_phase(
     date(1950, 1, 1), date(2014, 1, 1), period, anom=False)
 _, pdo_ph, sg_pdo, a_pdo = load_pdo_phase(date(1950, 1, 1),
                                           date(2014, 1, 1),
                                           period,
                                           anom=False)
 pool = Pool(WORKERS)
 net.wavelet(period, period_unit='y', cut=2, pool=pool)
 args = [(net.phase[:, i, j], i, j, nao_ph, nino_ph, sunspots_ph, pdo_ph)
         for i in range(net.lats.shape[0])
         for j in range(net.lons.shape[0])]
 result = pool.map(_compute_MI_synch, args)
 synchs = np.zeros((4, net.lats.shape[0], net.lons.shape[0]))
 synchs_surrs = np.zeros(
     (NUM_SURRS, 4, net.lats.shape[0], net.lons.shape[0]))
 for i, j, naos, ninos, suns, pdos in result:
     synchs[0, i, j] = naos
     synchs[1, i, j] = ninos
     synchs[2, i, j] = suns
     synchs[3, i, j] = pdos
 for surr in range(NUM_SURRS):
     sg_nao.construct_fourier_surrogates(algorithm='FT')
     sg_nao.add_seasonality(a_nao[0], a_nao[1], a_nao[2])
WORKERS = 5
NUM_SURRS = 100
to_do_periods = np.arange(2,15.5,0.5)
net = ScaleSpecificNetwork('/Users/nikola/work-ui/data/NCEP/air.mon.mean.levels.nc', 
                                    'air', date(1950,1,1), date(2014,1,1), None, None, 
                                    level = 0, dataset="NCEP", sampling='monthly', anom=False)

synchronization = {}
for period in to_do_periods:
    print("running for %.1f period..." % (period))
    _, nao_ph, sg_nao, a_nao = load_NAOindex_wavelet_phase(date(1950,1,1), date(2014,1,1), period, anom=False)
    _, nino_ph, sg_nino, a_nino = load_nino34_wavelet_phase(date(1950,1,1), date(2014,1,1), period, anom=False)
    _, sunspots_ph, sg_sunspots, a_sunspots = load_sunspot_number_phase(date(1950,1,1), date(2014,1,1), period, anom=False)
    _, pdo_ph, sg_pdo, a_pdo = load_pdo_phase(date(1950,1,1), date(2014,1,1), period, anom=False)
    pool = Pool(WORKERS)
    net.wavelet(period, period_unit='y', cut=2, pool=pool)
    args = [(net.phase[:, i, j], i, j, nao_ph, nino_ph, sunspots_ph, pdo_ph) for i in range(net.lats.shape[0]) for j in range(net.lons.shape[0])]
    result = pool.map(_compute_MI_synch, args)
    synchs = np.zeros((4, net.lats.shape[0], net.lons.shape[0]))
    synchs_surrs = np.zeros((NUM_SURRS, 4, net.lats.shape[0], net.lons.shape[0]))
    for i, j, naos, ninos, suns, pdos in result:
        synchs[0, i, j] = naos
        synchs[1, i, j] = ninos
        synchs[2, i, j] = suns
        synchs[3, i, j] = pdos
    for surr in range(NUM_SURRS):
        sg_nao.construct_fourier_surrogates(algorithm='FT')
        sg_nao.add_seasonality(a_nao[0], a_nao[1], a_nao[2])
        sg_nao.wavelet(period, period_unit="y", cut=2)
        sg_nino.construct_fourier_surrogates(algorithm='FT')
        sg_nino.add_seasonality(a_nino[0], a_nino[1], a_nino[2])
Пример #14
0
                    None,
                    None,
                    0,
                    'monthly',
                    anom=True)
                if var:
                    net.get_seasonality(det)

                if not var and det:
                    continue

                if c:
                    net.data *= net.latitude_cos_weights()

                pool = Pool(3)
                net.wavelet(per, get_amplitude=True, pool=pool)
                net.get_filtered_data(pool=pool)
                pool.close()

                fname = (
                    "filt-data/SATA-1000hPa-filtered%dperiod-%svarnorm-%sdetrend-%scosweighting.bin"
                    % (per, '' if var else 'NO', '' if det else 'NO',
                       '' if c else 'NO'))

                with open(fname, 'wb') as f:
                    cPickle.dump(
                        {
                            'filt. data': net.filtered_data,
                            'lats': net.lats,
                            'lons': net.lons,
                            'time': net.time
Пример #15
0
#         cPickle.dump({'mean_phase_diff' : np.mean(phase_diffs, axis = 0).flatten(), 
#             'std_phase_diff' : np.std(phase_diffs, axis = 0, ddof = 1).flatten(),
#             'var_phase_diff' : np.var(phase_diffs, axis = 0, ddof = 1).flatten()}, f, protocol = cPickle.HIGHEST_PROTOCOL)




to_do = [['MIGAU', 8], ['MIGAU', 6]]
for do in to_do:
    METHOD = do[0]
    PERIOD = do[1]
    print("computing for %d period using %s method" % (PERIOD, METHOD))
    net = ScaleSpecificNetwork('/home/nikola/Work/phd/data/air.mon.mean.levels.nc', 'air', 
                       date(1958,1,1), date(2014,1,1), None, None, 0, 'monthly', anom = True)
    pool = Pool(WORKERS)             
    net.wavelet(PERIOD, get_amplitude = False, pool = pool)
    print "wavelet on data done"
    pool.close()
    net.get_adjacency_matrix(net.phase, method = METHOD, pool = None, use_queue = True, num_workers = WORKERS)
    print "estimating adjacency matrix done"
    net.save_net('networks/NCEP-SATAsurface-phase-span-as-ERA-adjmat%s-scale%dyears.bin' % (METHOD, PERIOD), only_matrix = True)


    # print phase_diffs.shape

    # net.get_adjacency_matrix(phase_diffs, method = METHOD, pool = None, use_queue = True, num_workers = WORKERS)
    # net.save_net('networks/NCEP-ERA-phase-diff-adjmat%s-scale%dyears.bin' % (METHOD, PERIOD), only_matrix = True)

# net.get_adjacency_matrix(net.phase, method = METHOD, pool = None, use_queue = True, num_workers = WORKERS)
# print "estimating adjacency matrix done"
# net.save_net('networks/ERA-SATAsurface-phase-adjmat%s-scale%dyears.bin' % (METHOD, PERIOD), only_matrix = True)
Пример #16
0
#     net.get_adjacency_matrix_conditioned(nino34_phase, use_queue = True, num_workers = WORKERS)
#     print "estimating adjacency matrix done"
#     net.save_net('networks/NCEP-SAT%dy-phase-adjmatCMIEQQcondNINOphase.bin' % (PERIOD), only_matrix = True)

print "computing phase conditioned on NAO"
to_do = [4, 6, 11, 15]

for PERIOD in to_do:
    nao_phase = load_NAOindex_wavelet_phase(date(1948, 1, 1), date(2014, 1, 1),
                                            True)
    net = ScaleSpecificNetwork(
        '/home/nikola/Work/phd/data/air.mon.mean.levels.nc',
        'air',
        date(1950, 1, 1),
        date(2014, 1, 1),
        None,
        None,
        0,
        'monthly',
        anom=False)
    pool = Pool(WORKERS)
    net.wavelet(PERIOD, get_amplitude=False, pool=pool)
    print "wavelet on data done"
    pool.close()
    net.get_adjacency_matrix_conditioned(nao_phase,
                                         use_queue=True,
                                         num_workers=WORKERS)
    print "estimating adjacency matrix done"
    net.save_net('networks/NCEP-SAT%dy-phase-adjmatCMIEQQcondNAOphase.bin' %
                 (PERIOD),
                 only_matrix=True)
Пример #17
0
def _hilbert_ssa(args):
    i, j, data = args
    if not np.any(np.isnan(data)):
        ssa = ssa_class(data, M = 12)
        _, _, _, rc = ssa.run_ssa()
        real_part = rc[:, 0] + rc[:, 1]
        imag_part = np.imag(hilbert(real_part))
        phase_hilb_rc = np.arctan2(imag_part[12:-12], real_part[12:-12])
    else:
        phase_hilb_rc = np.nan
        
    return i, j, phase_hilb_rc


pool = Pool(NUM_WORKERS)
net.wavelet(1, 'y', pool = pool, cut = 1)

# Hilbert on RC SSA fluctuations
# args = [ (i, j, net.data[:, i, j]) for i in range(net.lats.shape[0]) for j in range(net.lons.shape[0]) ]
# results = pool.map(_hilbert_ssa, args)
# for i, j, res in results:
#     net.phase[:, i, j] = res

net.get_continuous_phase(pool = pool)
net.get_phase_fluctuations(rewrite = True, pool = pool)
pool.close()
pool.join()

# index_correlations = {}
# index_datas = {}
Пример #18
0
SCALES = np.arange(24, 186, 6) # 2 - 15yrs, 0.5yr step, in months
METHODS = ['MIEQQ', 'MIKNN']


for method in METHODS:

    for scale in SCALES:

        print("Computing networks for %d month scale using %s method..." % (scale, method))

        # phase
        net = ScaleSpecificNetwork(fname, 'air', date(1948,1,1), date(2016,1,1), None, None, level = 0, dataset = "NCEP", 
                sampling = 'monthly', anom = False)
        pool = Pool(NUM_WORKERS)
        net.wavelet(scale, 'm', pool = pool, cut = 1)
        pool.close()
        pool.join()
        net.get_adjacency_matrix(net.phase, method = method, pool = None, use_queue = True, num_workers = NUM_WORKERS)
        net.save_net('networks/NCEP-SATsurface-scale%dmonths-phase-adjmat%s.bin' % (scale, method), only_matrix = True)

        # amplitude
        net = ScaleSpecificNetwork(fname, 'air', date(1948,1,1), date(2016,1,1), None, None, level = 0, dataset = "NCEP", 
                sampling = 'monthly', anom = False)
        pool = Pool(NUM_WORKERS)
        net.wavelet(scale, 'm', pool = pool, cut = 1)
        pool.close()
        pool.join()
        net.get_adjacency_matrix(net.amplitude, method = method, pool = None, use_queue = True, num_workers = NUM_WORKERS)
        net.save_net('networks/NCEP-SATsurface-scale%dmonths-amplitude-adjmat%s.bin' % (scale, method), only_matrix = True)