def test_minmax(self): data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]] standard = Scaler(scheme='minmax') self.assertEqual( standard.fit_transform(data).tolist(), np.array([[0., 0.], [0.25, 0.25], [0.5, 0.5], [1., 1.]]).tolist()) self.assertEqual( standard.transform([[2, 2]]).tolist(), np.array([[1.5, 0.]]).tolist())
def test_standard(self): data = np.array([[0, 0], [0, 0], [1, 1], [1, 1]]) standard = Scaler(scheme='standard') self.assertEqual( standard.fit_transform(data).tolist(), np.array([[-1., -1.], [-1., -1.], [1., 1.], [1., 1.]]).tolist()) self.assertEqual( standard.transform([[2, 2]]).tolist(), np.array([[3., 3.]]).tolist())
# Creating a Neural Networks Model model = Sequential() model.add(Dense(28, input_shape=(X.shape[1], ), activation='relu')) model.add(Dense(256, activation='relu')) model.add(Dropout(0.25)) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(2048, activation='relu')) model.add(Dense(10, activation='softmax')) # Compiling Neural Networks Model model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=["acc"]) X_trainMatrix = scaler.transform(X) results = model.fit(X_trainMatrix, y_categorical, epochs=20, batch_size=128) plt.title('Loss') plt.plot(results.history['loss']) plt.show() plt.title('Accuracy') plt.plot(results.history['acc']) plt.show() classic_data = pd.read_csv('Dataset/classical.csv') print(classic_data.groupby('genre').size()) X_classic = classic_data.ix[:, 'tempo':]