coeff_novert = genfromtxt(path + 'coefficients/' + 'novert.coeff') coeff_all = genfromtxt(path + 'coefficients/' + 'all.coeff') #Get coefficient uncertainties sigma_novert = 1.96 * genfromtxt(path + 'coefficients/novert.boot', usecols=1) sigma_novert[1] = -sigma_novert[1] sigma_novert[2] = -sigma_novert[2] sigma_all = 1.96 * genfromtxt(path + 'coefficients/novert.boot', usecols=1) sigma_all[1] = -sigma_all[1] sigma_all[2] = -sigma_all[2] if len(dnov) >= minsta: #print "using "+str(len(dnov))+' stations' Mw_nov[kt] = scaling.PGD((dnov + delta) * 100, R, coefficients=coeff_novert, weight=False, norm=norm) Mw_all[kt] = scaling.PGD((dall + delta) * 100, R, coefficients=coeff_all, weight=False, norm=norm) #Now get upper and lower magnitude bound Mw_nov_plus[kt] = scaling.PGD(dnov * 100, R, coefficients=coeff_novert + sigma_novert, weight=True, norm=norm) Mw_all_plus[kt] = scaling.PGD(dall * 100,
dnov=r_[dnov,pgd[i,1]] dall=r_[dall,pgd[i,2]] R=r_[R,pgd[i,5]] #print R #print dall #Solve regression coeff_novert=genfromtxt(path+'coefficients/'+'novert.coeff') coeff_all=genfromtxt(path+'coefficients/'+'all.coeff') #Get coefficient uncertainties sigma_novert=1.96*genfromtxt(path+'coefficients/novert.boot',usecols=1) sigma_novert[1]=-sigma_novert[1] ; sigma_novert[2]=-sigma_novert[2] sigma_all=1.96*genfromtxt(path+'coefficients/novert.boot',usecols=1) sigma_all[1]=-sigma_all[1] ; sigma_all[2]=-sigma_all[2] if len(dnov)>=minsta: #print "using "+str(len(dnov))+' stations' Mw_nov[kt]=scaling.PGD(dnov*100,R,coefficients=coeff_novert,weight=weight,norm=norm) Mw_all[kt]=scaling.PGD(dall*100,R,coefficients=coeff_all,weight=weight,norm=norm) #Now get upper and lower magnitude bound Mw_nov_plus[kt]=scaling.PGD(dnov*100,R,coefficients=coeff_novert+sigma_novert,weight=weight,norm=norm) Mw_all_plus[kt]=scaling.PGD(dall*100,R,coefficients=coeff_all+sigma_all,weight=weight,norm=norm) Mw_nov_minus[kt]=scaling.PGD(dnov*100,R,coefficients=coeff_novert-sigma_novert,weight=weight,norm=norm) Mw_all_minus[kt]=scaling.PGD(dall*100,R,coefficients=coeff_all-sigma_all,weight=weight,norm=norm) else: Mw_nov[kt]=nan Mw_all[kt]=nan #Write to file savetxt(path+'PGD/magnitudes/'+event+'.mag',c_[tpgd,Mw_nov,Mw_all,Mw_nov_minus,Mw_nov_plus,Mw_all_minus,Mw_all_plus],fmt='%5.1f\t%5.4f\t%5.4f\t%5.4f\t%5.4f\t%5.4f\t%5.4f',header='t,Mw_nov,Mw_all,Mw_nov_minus,Mw_nov_plus,Mw_all_minus,Mw_all_plus') if plot:
coeff_all = genfromtxt(path + 'coefficients/' + 'all.coeff') #Get coefficient uncertainties sigma_novert = 1.96 * genfromtxt(path + 'coefficients/novert.boot', usecols=1) sigma_novert[1] = -sigma_novert[1] sigma_novert[2] = -sigma_novert[2] sigma_all = 1.96 * genfromtxt(path + 'coefficients/novert.boot', usecols=1) sigma_all[1] = -sigma_all[1] sigma_all[2] = -sigma_all[2] if len(dnov) >= minsta: #print "using "+str(len(dnov))+' stations' #Mw_nov[kt],res_nov[kt]=scaling.PGD(dnov*100,R,coefficients=coeff_novert,weight=False,norm=2,residual=True) Mw_all, res_all = scaling.PGD(dall * 100, R, coefficients=coeff_all, weight=False, norm=2, residual=True) #Now get upper and lower magnitude bound #Mw_nov_plus[kt]=scaling.PGD(dnov*100,R,coefficients=coeff_novert+sigma_novert,weight=True,norm=2) #Mw_all_plus[kt]=scaling.PGD(dall*100,R,coefficients=coeff_all+sigma_all,weight=True,norm=2) #Mw_nov_minus[kt]=scaling.PGD(dnov*100,R,coefficients=coeff_novert-sigma_novert,weight=True,norm=2) #Mw_all_minus[kt]=scaling.PGD(dall*100,R,coefficients=coeff_all-sigma_all,weight=True,norm=2) else: Mw_nov[kt] = nan Mw_all[kt] = nan Mw_nov = Mw_all Mw_nov_plus = Mw_all Mw_nov_minus = Mw_all Mw_all_plus = Mw_all