def scan_thread(): '''image scanning thread''' state = mpstate.camera_state while not state.unload.wait(0.02): try: # keep the queue size below 100, so we don't run out of memory if state.scan_queue.qsize() > 100: (frame_time,im) = state.scan_queue.get(timeout=0.2) (frame_time,im) = state.scan_queue.get(timeout=0.2) except Queue.Empty: continue t1 = time.time() im_full = numpy.zeros((960,1280,3),dtype='uint8') im_640 = numpy.zeros((480,640,3),dtype='uint8') scanner.debayer_full(im, im_full) scanner.downsample(im_full, im_640) regions = scanner.scan(im_640) t2 = time.time() state.scan_fps = 1.0 / (t2-t1) state.scan_count += 1 state.region_count += len(regions) if state.transmit_queue.qsize() < 100: state.transmit_queue.put((frame_time, regions, im_full, im_640))
def scan_thread(): '''image scanning thread''' state = mpstate.camera_state while not state.unload.wait(0.02): try: # keep the queue size below 100, so we don't run out of memory if state.scan_queue.qsize() > 100: (frame_time, im) = state.scan_queue.get(timeout=0.2) (frame_time, im) = state.scan_queue.get(timeout=0.2) except Queue.Empty: continue t1 = time.time() im_full = numpy.zeros((960, 1280, 3), dtype='uint8') im_640 = numpy.zeros((480, 640, 3), dtype='uint8') scanner.debayer_full(im, im_full) scanner.downsample(im_full, im_640) regions = cuav_region.RegionsConvert(scanner.scan(im_640)) t2 = time.time() state.scan_fps = 1.0 / (t2 - t1) state.scan_count += 1 regions = cuav_region.filter_regions(im_full, regions, min_score=min( state.settings.minscore, state.settings.minscore2)) state.region_count += len(regions) if state.transmit_queue.qsize() < 100: state.transmit_queue.put((frame_time, regions, im_full, im_640))
def scan_thread(): '''image scanning thread''' state = mpstate.camera_state while not state.unload.wait(0.02): try: # keep the queue size below 100, so we don't run out of memory if state.scan_queue.qsize() > 25: (frame_time,im) = state.scan_queue.get(timeout=0.2) (frame_time,im) = state.scan_queue.get(timeout=0.2) except Queue.Empty: continue t1 = time.time() #im_full = numpy.zeros((600,800,3),dtype='uint8') im_640 = numpy.zeros((480,640,3),dtype='uint8') #scanner.debayer_full(im, im_full) #scanner.downsample(im_full, im_640) #cv.SaveImage("/tmp/downsampled.jpg",cv.fromarray(im)) scanner.downsample(im, im_640) #cv.SaveImage("/tmp/downsampled.jpg",cv.fromarray(im)) #cv.SaveImage("/tmp/downsampled_640.jpg",cv.fromarray(im_640)) regions = cuav_region.RegionsConvert(scanner.scan(im_640)) t2 = time.time() state.scan_fps = 1.0 / (t2-t1) state.scan_count += 1 print regions #regions = cuav_region.filter_regions(im, regions, min_score=state.minscore) regions = cuav_region.filter_regions(im, regions, min_score=0) #regions = cuav_region.filter_regions(im_full, regions, min_score=state.minscore) print regions state.region_count += len(regions) if state.transmit_queue.qsize() < 50: #if state.transmit_queue.qsize() < 2: state.transmit_queue.put((frame_time, regions, im, im_640))
def bayer_thread(): """thread for debayering images""" while True: frame_time, im = state.bayer_queue.get() im_colour = numpy.zeros((960, 1280, 3), dtype="uint8") scanner.debayer_full(im, im_colour) if opts.compress: state.compress_queue.put((frame_time, im_colour)) if opts.scan: im_640 = numpy.zeros((480, 640, 3), dtype="uint8") scanner.downsample(im_colour, im_640) state.scan_queue.put((frame_time, im_640))
def process(args): """process a set of files""" global slipmap, mosaic scan_count = 0 files = [] for a in args: if os.path.isdir(a): files.extend(glob.glob(os.path.join(a, "*.pgm"))) else: files.append(a) files.sort() num_files = len(files) print ("num_files=%u" % num_files) region_count = 0 joes = [] if opts.mavlog: mpos = mav_position.MavInterpolator(gps_lag=opts.gps_lag) mpos.set_logfile(opts.mavlog) else: mpos = None if opts.boundary: boundary = cuav_util.polygon_load(opts.boundary) else: boundary = None if opts.mosaic: slipmap = mp_slipmap.MPSlipMap(service="GoogleSat", elevation=True, title="Map") icon = slipmap.icon("planetracker.png") slipmap.add_object( mp_slipmap.SlipIcon("plane", (0, 0), icon, layer=3, rotation=0, follow=True, trail=mp_slipmap.SlipTrail()) ) C_params = cam_params.CameraParams(lens=opts.lens) path = os.path.join( os.path.dirname(os.path.realpath(__file__)), "..", "..", "cuav", "data", "chameleon1_arecont0.json" ) C_params.load(path) mosaic = cuav_mosaic.Mosaic(slipmap, C=C_params) if boundary is not None: mosaic.set_boundary(boundary) if opts.joe: joes = cuav_util.polygon_load(opts.joe) if boundary: for i in range(len(joes)): joe = joes[i] if cuav_util.polygon_outside(joe, boundary): print ("Error: joe outside boundary", joe) return icon = slipmap.icon("flag.png") slipmap.add_object(mp_slipmap.SlipIcon("joe%u" % i, (joe[0], joe[1]), icon, layer=4)) joelog = cuav_joe.JoeLog("joe.log") if opts.view: viewer = mp_image.MPImage(title="Image") for f in files: frame_time = cuav_util.parse_frame_time(f) if mpos: try: if opts.roll_stabilised: roll = 0 else: roll = None pos = mpos.position(frame_time, opts.max_deltat, roll=roll) slipmap.set_position("plane", (pos.lat, pos.lon), rotation=pos.yaw) except mav_position.MavInterpolatorException as e: print e pos = None else: pos = None # check for any events from the map if opts.mosaic: slipmap.check_events() mosaic.check_events() if f.endswith(".pgm"): pgm = cuav_util.PGM(f) im = pgm.array if pgm.eightbit: im_8bit = im else: im_8bit = numpy.zeros((960, 1280, 1), dtype="uint8") if opts.gamma != 0: scanner.gamma_correct(im, im_8bit, opts.gamma) else: scanner.reduce_depth(im, im_8bit) im_full = numpy.zeros((960, 1280, 3), dtype="uint8") scanner.debayer_full(im_8bit, im_full) im_640 = numpy.zeros((480, 640, 3), dtype="uint8") scanner.downsample(im_full, im_640) else: im_full = cv.LoadImage(f) im_640 = cv.CreateImage((640, 480), 8, 3) cv.Resize(im_full, im_640) im_640 = numpy.ascontiguousarray(cv.GetMat(im_640)) im_full = numpy.ascontiguousarray(cv.GetMat(im_full)) count = 0 total_time = 0 img_scan = im_640 t0 = time.time() for i in range(opts.repeat): if opts.fullres: regions = scanner.scan_full(im_full) else: regions = scanner.scan(img_scan) count += 1 regions = cuav_region.RegionsConvert(regions) t1 = time.time() if opts.filter: regions = cuav_region.filter_regions(im_full, regions, frame_time=frame_time, min_score=opts.minscore) scan_count += 1 # optionally link all the images with joe into a separate directory # for faster re-running of the test with just joe images if pos and opts.linkjoe and len(regions) > 0: cuav_util.mkdir_p(opts.linkjoe) if not cuav_util.polygon_outside((pos.lat, pos.lon), boundary): joepath = os.path.join(opts.linkjoe, os.path.basename(f)) if os.path.exists(joepath): os.unlink(joepath) os.symlink(f, joepath) if pos and len(regions) > 0: joelog.add_regions(frame_time, regions, pos, f, width=1280, height=960, altitude=opts.altitude) if boundary: regions = cuav_region.filter_boundary(regions, boundary, pos) region_count += len(regions) if opts.mosaic and len(regions) > 0: composite = cuav_mosaic.CompositeThumbnail( cv.GetImage(cv.fromarray(im_full)), regions, quality=opts.quality ) chameleon.save_file("composite.jpg", composite) thumbs = cuav_mosaic.ExtractThumbs(cv.LoadImage("composite.jpg"), len(regions)) mosaic.add_regions(regions, thumbs, f, pos) if opts.compress: jpeg = scanner.jpeg_compress(im_full, opts.quality) jpeg_filename = f[:-4] + ".jpg" if os.path.exists(jpeg_filename): print ("jpeg %s already exists" % jpeg_filename) continue chameleon.save_file(jpeg_filename, jpeg) if opts.view: if opts.fullres: img_view = im_full else: img_view = img_scan mat = cv.fromarray(img_view) for r in regions: (x1, y1, x2, y2) = r.tuple() if opts.fullres: x1 *= 2 y1 *= 2 x2 *= 2 y2 *= 2 cv.Rectangle(mat, (max(x1 - 2, 0), max(y1 - 2, 0)), (x2 + 2, y2 + 2), (255, 0, 0), 2) cv.CvtColor(mat, mat, cv.CV_BGR2RGB) viewer.set_image(mat) total_time += t1 - t0 print ("%s scan %.1f fps %u regions [%u/%u]" % (f, count / total_time, region_count, scan_count, num_files))
def process(filename): '''process one file''' pgm = cuav_util.PGM(filename) img_full_grey = pgm.array im_full = numpy.zeros((960,1280,3),dtype='uint8') im_640 = numpy.zeros((480,640,3),dtype='uint8') t0 = time.time() for i in range(opts.repeat): scanner.debayer(img_full_grey, im_640) t1 = time.time() print('debayer: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() for i in range(opts.repeat): scanner.debayer_full(img_full_grey, im_full) t1 = time.time() print('debayer_full: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() im_full2 = cv.CreateImage((1280,960),8,3) img_full_grey2 = cv.GetImage(cv.fromarray(img_full_grey)) for i in range(opts.repeat): cv.CvtColor(img_full_grey2, im_full2, cv.CV_BayerBG2BGR) t1 = time.time() print('debayer_cv_full: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() for i in range(opts.repeat): img = cv.GetImage(cv.fromarray(im_full)) cv.CvtColor(img, img, cv.CV_RGB2HSV) t1 = time.time() print('RGB2HSV_full: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() for i in range(opts.repeat): img = cv.GetImage(cv.fromarray(im_640)) cv.CvtColor(img, img, cv.CV_RGB2HSV) t1 = time.time() print('RGB2HSV_640: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() for i in range(opts.repeat): thumb = numpy.empty((100,100,3),dtype='uint8') scanner.rect_extract(im_full, thumb, 120, 125) t1 = time.time() print('rect_extract: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() for i in range(opts.repeat): thumb = cuav_util.SubImage(cv.GetImage(cv.fromarray(im_full)), (120,125,100,100)) t1 = time.time() print('SubImage: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() for i in range(opts.repeat): scanner.downsample(im_full, im_640) t1 = time.time() print('downsample: %.1f fps' % (opts.repeat/(t1-t0))) t0 = time.time() for i in range(opts.repeat): scanner.scan(im_640) t1 = time.time() print('scan: %.1f fps' % (opts.repeat/(t1-t0))) for quality in [30, 40, 50, 60, 70, 80, 90, 95]: t0 = time.time() for i in range(opts.repeat): jpeg = cPickle.dumps(ImagePacket(time.time(), scanner.jpeg_compress(im_full, quality)), protocol=cPickle.HIGHEST_PROTOCOL) t1 = time.time() print('jpeg full quality %u: %.1f fps %u bytes' % (quality, opts.repeat/(t1-t0), len(bytes(jpeg)))) for quality in [30, 40, 50, 60, 70, 80, 90, 95]: t0 = time.time() for i in range(opts.repeat): jpeg = cPickle.dumps(ImagePacket(time.time(), scanner.jpeg_compress(im_640, quality)), protocol=cPickle.HIGHEST_PROTOCOL) t1 = time.time() print('jpeg 640 quality %u: %.1f fps %u bytes' % (quality, opts.repeat/(t1-t0), len(bytes(jpeg)))) for thumb_size in [10, 20, 40, 60, 80, 100]: thumb = numpy.zeros((thumb_size,thumb_size,3),dtype='uint8') t0 = time.time() for i in range(opts.repeat): scanner.rect_extract(im_full, thumb, 0, 0) jpeg = cPickle.dumps(ImagePacket(time.time(), scanner.jpeg_compress(thumb, 85)), protocol=cPickle.HIGHEST_PROTOCOL) t1 = time.time() print('thumb %u quality 85: %.1f fps %u bytes' % (thumb_size, opts.repeat/(t1-t0), len(bytes(jpeg))))