Пример #1
0
from scannerpy import Database, Job

################################################################################
# This tutorial shows how to select different frames of a video to process.   #
################################################################################

with Database() as db:

    # We can access previously created tables with db.table(name).
    input_table = db.table('example')

    # You can tell Scanner which frames of the video (or which rows of a video
    # table) you want to sample. Here, the "strided" sampling mode will run over
    # every 8th frame, i.e. frames [0, 8, 16, ...]
    frame, frame_info = input_table.as_op().strided(8)

    # We pass the job to the database same as before, and can process the output
    # same as before.
    histogram = db.ops.Histogram(frame = frame, frame_info = frame_info)
    job = Job(columns = [histogram], name = 'example_hist_strided')
    output_table = db.run(job, force=True)

    # Here's some examples of other sampling modes.
    # Range takes a specific subset of a video. Here, it runs over all frames from
    # 0 to 100
    input_table.as_op().range(0, 100)

    # Gather takes an arbitrary list of frames from a video.
    input_table.as_op().gather([10, 17, 32])
Пример #2
0
    strided_frame = db.streams.Stride(frame, stride)

    model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
    model_url = MODEL_TEMPLATE_URL.format(model_name)

    # Call the newly created object detect op
    objdet_frame = db.ops.ObjDetect(
        frame=strided_frame,
        dnn_url=model_url,
        device=DeviceType.GPU if db.has_gpu() else DeviceType.CPU,
        batch=2)

    output_op = db.sinks.Column(columns={'bundled_data': objdet_frame})
    job = Job(
        op_args={
            frame: db.table('example').column('frame'),
            output_op: 'example_obj_detect',
        })

    [out_table] = db.run(output=output_op,
                         jobs=[job],
                         force=True,
                         pipeline_instances_per_node=1)

    out_table.profiler().write_trace('obj.trace')

    print('Extracting data from Scanner output...')

    # bundled_data_list is a list of bundled_data
    # bundled data format: [box position(x1 y1 x2 y2), box class, box score]
    bundled_data_list = [
Пример #3
0
def start_mxnet_pipeline(test_video_path='videos/example.mp4',
                         out_dir='./',
                         batch=BATCH_SIZE,
                         load_to_disk=False):
    global timelist

    if util.have_gpu():
        device = DeviceType.GPU
        print('with GPU device!')
    else:
        device = DeviceType.CPU
        print('only has CPU device!')

    script_dir = os.path.dirname(os.path.abspath(__file__))

    num_rows = 0
    # Start Scanner DB, use its load worker to generate .proto and .bin files
    with Database() as db:
        # register the fake kernel
        db.register_op('Fake', [('frame', ColumnType.Video)], ['class'])
        kernel_path = script_dir + '/fake_op.py'
        db.register_python_kernel('Fake', device, kernel_path, batch=10)

        # Choose Fake kernel can be faster, or you can choose PyMxnet
        # db.register_op('PyMxnet', [('frame', ColumnType.Video)], ['class'])
        # kernel_path = script_dir + '/pymxnet_op.py'
        # db.register_python_kernel('PyMxnet', DeviceType.CPU, kernel_path, batch=10)

        start = now()
        [input_table
         ], failed = db.ingest_videos([('end2end_raw', test_video_path)],
                                      force=True)
        stop = now()
        delta = stop - start
        print('Time to ingest videos: {:.4f}s, fps: {:.4f}'.format(
            delta,
            input_table.num_rows() / delta))
        # timelist += '"ingest-video" : %f,' % (delta)
        timelist["ingest-video"] = delta

        num_rows = input_table.num_rows()
        print('Number of frames in movie: {:d}'.format(num_rows))

        if len(failed) > 0:
            print('Failures:', failed)

        # Start to analyze the movie
        start = now()
        frame = db.ops.FrameInput()
        # Then we use our op just like in the other examples.
        # Choose Fake kernel can be faster, or you can choose PyMxnet
        classes = db.ops.Fake(frame=frame, batch=batch)
        # classes = db.ops.PyMxnet(frame = frame, batch = batch)
        output_op = db.ops.Output(columns=[classes])
        job = Job(op_args={
            frame: input_table.column('frame'),
            output_op: 'end2end_out'
        })
        bulk_job = BulkJob(output=output_op, jobs=[job])
        [output_table] = db.run(bulk_job,
                                force=True,
                                profiling=False,
                                pipeline_instances_per_node=1,
                                load_to_disk=load_to_disk,
                                work_packet_size=WORK_PACKET_SIZE)

        stop = now()
        delta = stop - start
        print(
            'Batch: {:d} End-to-end Python Kernel time: {:.4f}s, {:.1f} fps\n'.
            format(batch, delta,
                   input_table.num_rows() / delta))
        # timelist += '"scanner-execution" : %f,' % (delta)
        timelist["scanner-execution"] = delta

        # output_table.profiler().write_trace(
        #   out_dir + 'end2end_{:d}.trace'.format(batch))

        # If not load_to_disk, then it does not go to the next part
        if load_to_disk == False:
            video_classes = output_table.load(['class'], parsers.classes)

            # Loop over the column's rows.
            # Each row is a tuple of the frame number and value for that row.
            num_rows = 0
            for (frame_index, frame_classes) in video_classes:
                assert len(frame_classes) == 1
                assert frame_classes[0].shape[0] == 1
                # print(frame_classes[0])
                num_rows += 1
            assert num_rows == db.table('end2end_raw').num_rows()

            print(db.summarize())
            exit()

    # Then start the Lambda part
    # extract video name
    videoPrefix = test_video_path.split(".")[-2].split("/")[-1]
    print('video name is: {:s}'.format(videoPrefix))
    # uploadPrefix = UPLOAD_PREFIX + '/' + videoPrefix
    uploadPrefix = UPLOAD_PREFIX + '/{}_{}'.format(videoPrefix,
                                                   WORK_PACKET_SIZE)

    if load_to_disk == True:
        # Upload all .proto files
        start = now()
        fileCount, totalSize = upload_output_to_s3(UPLOAD_BUCKET, uploadPrefix,
                                                   PROTO_EXT)

        # Upload all .bin files
        fileCount, totalSize = upload_output_to_s3(UPLOAD_BUCKET, uploadPrefix,
                                                   BIN_EXT)
        stop = now()
        delta = stop - start
        print('Upload to S3 time: {:.4f} s'.format(delta))
        # timelist += '"upload-s3" : %f,' % (delta)
        timelist["upload-s3"] = delta

        # Call Lambdas to decode, provide Bucket Name, File Prefix, Start Frame
        # Then decoder Lambdas will write to S3, which will trigger MXNet Lambdas
        start = now()
        lambdaTotalCount = len(xrange(0, num_rows, WORK_PACKET_SIZE))
        bar = progressbar.ProgressBar(maxval=lambdaTotalCount, \
              widgets=[progressbar.Bar('=', 'Lambdas   [', ']'), ' ',
                       progressbar.Percentage()])
        bar.start()
        lambdaCount = 0
        for startFrame in xrange(0, num_rows, WORK_PACKET_SIZE):
            # print("Invoke lambda for start frame {:d}".format(startFrame))
            result = invoke_decoder_lambda(UPLOAD_BUCKET, uploadPrefix,
                                           startFrame, batch)
            if not result:
                print(
                    'Fail to invoke for frame {:d}, retry.'.format(startFrame))
                res = invoke_decoder_lambda(UPLOAD_BUCKET, uploadPrefix,
                                            startFrame, batch)
                if not res:
                    print('Frame {:d} still failed, exit'.format(startFrame))
                    exit()
            lambdaCount += 1
            bar.update(lambdaCount)
        bar.finish()
        stop = now()
        delta = stop - start
        assert (lambdaCount == lambdaTotalCount)
        print('Triggered #{} Lambdas, time {:.4f} s'.format(
            lambdaCount, delta))
        # timelist += '"invoke-lambda" : %f,' % (delta)
        timelist["invoke-lambda"] = delta

        # Wait until all output files appear
        fileCount = wait_until_all_finished(0, num_rows, batch, videoPrefix)
        # assert(fileCount == len(xrange(0, num_rows, batch)))
        totalCount = len(xrange(0, num_rows, batch))
        print('Collected {:d} out of {:d} files, error rate: {:.4f}'.format(
            fileCount, totalCount,
            (totalCount - fileCount) * 1.0 / totalCount))
Пример #4
0
def start_fuse_pipeline(videoPath, args):
    global timelist

    if util.have_gpu():
        device = DeviceType.GPU
        print('has GPU device!')
    else:
        device = DeviceType.CPU
        print('only has CPUs!')

    scriptDir = './'
    numFrames = 0

    batch = args.batch
    videoPrefix = videoPath.split(".")[-2].split("/")[-1]
    print('Video name is: {:s}'.format(videoPrefix))

    uploadPrefix = os.path.join(args.uploadPrefix,
                                '{}_{}'.format(videoPrefix, batch))
    args.uploadPrefix = uploadPrefix

    ###################################################
    # 0. Start Scanner DB
    # Use its load worker to generate .proto and .bin files
    ###################################################
    with Database() as db:
        # Register the fake kernel
        db.register_op('Fake', [('frame', ColumnType.Video)], ['class'])
        kernelPath = os.path.join(scriptDir, 'fake_op.py')
        db.register_python_kernel('Fake', device, kernelPath, batch=10)

        ####################
        # Ingest the video
        ####################
        start = now()
        [input_table
         ], failed = db.ingest_videos([('end2end_fused_raw', videoPath)],
                                      force=True)
        stop = now()
        delta = stop - start
        print('Time to ingest videos: {:.4f}s, fps: {:.4f}'.format(
            delta,
            input_table.num_rows() / delta))
        timelist["ingest-video"] = delta

        numFrames = input_table.num_rows()
        print('Number of frames in movie: {:d}'.format(numFrames))

        if len(failed) > 0:
            print('Failures:', failed)

        ######################
        # Prepare decode data
        ######################
        start = now()
        frame = db.ops.FrameInput()
        classes = db.ops.Fake(frame=frame, batch=batch)
        output_op = db.ops.Output(columns=[classes])
        job = Job(op_args={
            frame: input_table.column('frame'),
            output_op: 'end2end_fused_out'
        })
        bulk_job = BulkJob(output=output_op, jobs=[job])
        [output_table] = db.run(bulk_job,
                                force=True,
                                profiling=False,
                                pipeline_instances_per_node=1,
                                load_to_disk=True,
                                work_packet_size=batch)

        stop = now()
        delta = stop - start
        print('Batch: {:d} Decode preparation time: {:.4f}s, {:.1f} fps\n'.
              format(batch, delta, numFrames / delta))
        timelist["pre-decode"] = delta

    ###################################################
    # 1. Start the Lambda part
    # Use Lambdas to decode and evaluate kernels
    ###################################################

    ######################
    # 1.0 Upload all .proto files
    ######################
    uploadBucket = args.uploadBucket
    start = now()
    fileCount, totalSize = upload_output_to_s3(uploadBucket, uploadPrefix,
                                               PROTO_EXT)

    ######################
    # 1.1 Upload all .bin files
    ######################
    fileCount, totalSize = upload_output_to_s3(uploadBucket, uploadPrefix,
                                               BIN_EXT)
    stop = now()
    delta = stop - start
    print('Upload args to S3 time: {:.4f} s'.format(delta))
    timelist["upload-s3"] = delta

    ################################################
    # 1.2 Call Lambdas to decode + evaluate,
    # provide Bucket Name, File Prefix, numFrames, batch
    ################################################
    start = now()
    lambdaCount = invoke_lambdas(numFrames, args)
    stop = now()
    delta = stop - start
    print('Triggered #{} Lambdas, time {:.4f} s'.format(lambdaCount, delta))
    timelist["invoke-lambda"] = delta

    ################################################
    # 1.3 Wait until all output files appear
    ################################################
    fileCount = wait_until_all_finished(0, numFrames, videoPrefix, args)
    totalCount = len(xrange(0, numFrames, batch))
    print('Collected {:d} out of {:d} files, error rate: {:.4f}'.format(
        fileCount, totalCount, (totalCount - fileCount) * 1.0 / totalCount))
Пример #5
0
def test_stencil(db):
    frame = db.sources.FrameColumn()
    sample_frame = db.streams.Range(frame, 0, 1)
    flow = db.ops.OpticalFlow(frame=sample_frame, stencil=[-1, 0])
    output_op = db.sinks.Column(columns={'flow': flow})
    job = Job(op_args={
        frame: db.table('test1').column('frame'),
        output_op: 'test_sencil',
    })

    tables = db.run(
        output_op, [job],
        force=True,
        show_progress=False,
        pipeline_instances_per_node=1)

    num_rows = 0
    for _ in tables[0].column('flow').load():
        num_rows += 1
    assert num_rows == 1

    frame = db.sources.FrameColumn()
    sample_frame = db.streams.Range(frame, 0, 1)
    flow = db.ops.OpticalFlow(frame=sample_frame, stencil=[0, 1])
    output_op = db.sinks.Column(columns={'flow': flow})
    job = Job(op_args={
        frame: db.table('test1').column('frame'),
        output_op: 'test_sencil',
    })

    tables = db.run(
        output_op, [job],
        force=True,
        show_progress=False,
        pipeline_instances_per_node=1)

    frame = db.sources.FrameColumn()
    sample_frame = db.streams.Range(frame, 0, 2)
    flow = db.ops.OpticalFlow(frame=sample_frame, stencil=[0, 1])
    output_op = db.sinks.Column(columns={'flow': flow})
    job = Job(op_args={
        frame: db.table('test1').column('frame'),
        output_op: 'test_sencil',
    })

    tables = db.run(
        output_op, [job],
        force=True,
        show_progress=False,
        pipeline_instances_per_node=1)

    num_rows = 0
    for _ in tables[0].column('flow').load():
        num_rows += 1
    assert num_rows == 2

    frame = db.sources.FrameColumn()
    flow = db.ops.OpticalFlow(frame=frame, stencil=[-1, 0])
    sample_flow = db.streams.Range(flow, 0, 1)
    output_op = db.sinks.Column(columns={'flow': sample_flow})
    job = Job(op_args={
        frame: db.table('test1').column('frame'),
        output_op: 'test_sencil',
    })

    tables = db.run(
        output_op, [job],
        force=True,
        show_progress=False,
        pipeline_instances_per_node=1)

    num_rows = 0
    for _ in tables[0].column('flow').load():
        num_rows += 1
    assert num_rows == 1
Пример #6
0
encoded_image = db.sources.Files()
frame = db.ops.ImageDecoder(img=encoded_image)

encoded_mask = db.sources.Files()
mask_frame = db.ops.ImageDecoder(img=encoded_mask)

my_depth_estimation_class = db.ops.MyDepthEstimationClass(
    image=frame, mask=mask_frame, img_size=256, model_path=model_path)
output_op = db.sinks.FrameColumn(columns={'frame': my_depth_estimation_class})

job = Job(
    op_args={
        encoded_image: {
            'paths': image_files
        },
        encoded_mask: {
            'paths': mask_files
        },
        output_op: 'example_resized',
    })

[out_table] = db.run(output_op, [job], force=True)

results = out_table.column('frame').load()

path_to_save = join(dataset, 'players', 'prediction_scanner')
if not os.path.exists(path_to_save):
    os.mkdir(path_to_save)

for i, res in enumerate(results):
    pred_scanner = np.argmax(res, axis=0)
Пример #7
0
with Database() as db:

    # Scanner can take a directed acyclic graph (DAG) of operators and pass data
    # between them. Each graph has starts with data from an input table.
    frame = db.ops.FrameInput()

    blurred_frame = db.ops.Blur(frame=frame, kernel_size=3, sigma=0.5)

    # Multiple operators can be hooked up in a computation by using the outputs
    # of one as the inputs of another.
    histogram = db.ops.Histogram(frame=blurred_frame)

    output_op = db.ops.Output(columns=[histogram])

    job = Job(op_args={
        frame: db.table('example').column('frame'),
        output_op: 'output_table',
    })
    bulk_job = BulkJob(output=output_op, jobs=[job])

    db.run(bulk_job, force=True)

    # Ops can have several attributes that affect which stream elements they
    # will receive or how they will receive them. These attributes include:
    #
    # - Batch: The Op can receive multiple elements at once to enable SIMD
    #          or vector-style processing.
    #
    # - Stencil: The Op requires a window of input elements (for example, the
    #            previous and next element) at the same time to produce an
    #            output.
    #
Пример #8
0
    # represents a video frame.
    frame = db.ops.FrameInput()

    # These frames are input into a Histogram op that computes a color histogram
    # for each frame.
    hist = db.ops.Histogram(frame=frame)

    # Finally, any columns provided to Output will be saved to the output
    # table at the end of the computation.
    output_op = db.ops.Output(columns=[hist])

    # A job defines a table you want to create. In op_args, we bind the frame
    # input column from above to the table we want to read from and name
    # the output table 'example_hist' by binding a string to output_op.
    job1 = Job(op_args={
        frame: db.table('test_raw1').column('frame'),
        output_op: 'test_hist1'
    })

    job2 = Job(op_args={
        frame: db.table('test_raw2').column('frame'),
        output_op: 'test_hist2'
    })

    # Multiple tables can be created using the same execution graph using
    # a bulk job. Here we specify the execution graph (or DAG) by providing
    # the output_op and also specify the jobs we wish to compute.
    bulk_job = BulkJob(output=output_op, jobs=[job1, job2])

    # This executes the job and produces the output table. You'll see a progress
    # bar while Scanner is computing the outputs.
    start = now()
Пример #9
0
# 1. Device Type:
#   Ops can specify that they require CPUs or GPUs by declaring their device
#   type. By default, the device_type is DeviceType.CPU.


@scannerpy.register_python_op(device_type=DeviceType.CPU)
def device_resize(config, frame: FrameType) -> FrameType:
    return cv2.resize(frame, (config.args['width'], config.args['height']))


frame = db.sources.FrameColumn()
resized_frame = db.ops.device_resize(frame=frame, width=640, height=480)
output = db.sinks.FrameColumn(columns={'frame': resized_frame})

job = Job(op_args={
    frame: input_table.column('frame'),
    output: 'example_resize'
})

#[table] = db.run(output=output, jobs=[job], force=True)

#table.column('frame').save_mp4('02_device_resize')

videos.append('02_device_resize.mp4')

# 2. Batch:
#   The Op can receive multiple elements at once to enable SIMD or
#   vector-style processing.


@scannerpy.register_python_op(batch=10)
def batch_resize(config, frame: Sequence[FrameType]) -> Sequence[FrameType]:
Пример #10
0
input_tables, failed = db.ingest_videos([(movie_name, movie_path), ('mask', mask_path)], force=True)

print(db.summarize())
print('Failures:', failed)

cam_data = np.load('/home/krematas/Mountpoints/grail/data/barcelona/calib/00114.npy').item()


# db.register_op('Calibrate', [('frame', ColumnType.Video), ('mask', ColumnType.Video)], [('resized', ColumnType.Video)])

# Custom Python kernels for ops reside in a separate file, here calibrate_kernel.py.
# cwd = '/home/krematas/code/scanner/examples/apps/soccer'
# db.register_python_kernel('Calibrate', DeviceType.CPU, cwd + '/calibrate_kernel.py')

frame = db.sources.FrameColumn()
mask = db.sources.FrameColumn()

# Then we use our op just like in the other examples.
calibrate_video_class = db.ops.CalibrationClass(frame=frame, mask=mask, w=3840, h=2160, A=cam_data['A'], R=cam_data['R'], T=cam_data['T'])
output_op = db.sinks.FrameColumn(columns={'frame': calibrate_video_class})

job = Job(op_args={
    frame: input_tables[0].column('frame'),
    mask: input_tables[1].column('frame'),
    output_op: 'example_resized',
})
[out_table] = db.run(output_op, [job], force=True)
out_table.column('frame').save_mp4(movie_name + '_faces')

print('Successfully generated {:s}_faces.mp4'.format(movie_name))
Пример #11
0
if db.has_gpu():
    print('Using GPUs')
    device = DeviceType.GPU
    pipeline_instances = -1
else:
    print('Using CPUs')
    device = DeviceType.CPU
    pipeline_instances = 1

frame = db.sources.FrameColumn()
poses_out = db.ops.OpenPose(
    frame=frame,
    pose_num_scales=3,
    pose_scale_gap=0.33,
    device=device)
drawn_frame = db.ops.PoseDraw(frame=frame, frame_poses=poses_out)
sampled_frames = sampler(drawn_frame)
output = db.sinks.Column(columns={'frame': sampled_frames})
job = Job(
    op_args={
        frame: input_table.column('frame'),
        sampled_frames: sampler_args,
        output: movie_name + '_drawn_poses',
})
[drawn_poses_table] = db.run(output=output, jobs=[job], work_packet_size=8, io_packet_size=64,
                             pipeline_instances_per_node=pipelineinstances,
                             force=True)

print('Writing output video...')
drawn_poses_table.column('frame').save_mp4('{:s}_poses'.format(movie_name))
Пример #12
0
def test_mxnet_lambda(server="0.0.0.0", path="/hello", batch = 1, num = 3, 
                      fm_num = 1, out_dir = './'):

  if num > 4:
    test_video_path = util.download_video2('http://web/stanford.edu/~jamesh93/video/wild720p.mkv')
  else:
    test_video_path = util.download_video1(num, fm_num)
  
  print('#{:d} video, #{:d} format, outdir: {}'.format(num, fm_num, out_dir))
  print('Lambda server: {}, Lambda path: {}'.format(server, path))
  if util.have_gpu():
    device = DeviceType.GPU
  else:
    device = DeviceType.CPU


  with Database() as db:
    if not os.path.isfile('lambda_op/build/libmxnetlambda_op.so'):
      print('You need to build the custom op first: \n'
          '$ cd lambda_op; mkdir build && cd build; cmake ..; make')
      exit()

    # To load a custom op into the Scanner runtime, we use db.load_op to open the
    # shared library we compiled. If the op takes arguments, it also optionally
    # takes a path to the generated python file for the arg protobuf.
    db.load_op('lambda_op/build/libmxnetlambda_op.so', 'lambda_op/build/mxnetlambda_pb2.py')

    start = now()
    [input_table], failed = db.ingest_videos([ 
        ('test_mxnet_raw', test_video_path)], force=True)
    stop = now()
    delta = stop - start
    print('Time to ingest videos: {:.4f}s, fps: {:.4f}'.format(
      delta, input_table.num_rows() / delta))
    num_rows = input_table.num_rows()
    print('Number of frames in movie: {:d}'.format(num_rows))
    
    if len(failed) > 0:
      print('Failures:', failed)

    # Start to analyze the movie
    start = now()
    frame = db.ops.FrameInput()
    # Then we use our op just like in the other examples.
    classes = db.ops.MxnetLambda(
      frame = frame,
      batch = batch,
      device = device,
      server = server, path = path)
    output_op = db.ops.Output(columns=[classes])
    job = Job(
      op_args={
        frame: db.table('test_mxnet_raw').column('frame'),
        output_op: 'test_mxnet_lambda'
      }
    )
    bulk_job = BulkJob(output=output_op, jobs=[job])
    [output_table] = db.run(bulk_job, force=True, profiling=True)

    stop = now()
    delta = stop - start
    print('Batch: {:d} MXNet Lambda time: {:.4f}s, {:.1f} fps\n'.format(
        batch, delta, input_table.num_rows() / delta))

    output_table.profiler().write_trace(
      out_dir + 'test_mxnet_{:d}_{:d}_{:d}.trace'.format(num, fm_num, batch))

    video_classes = output_table.load(['class'], parsers.classes)

    # Loop over the column's rows. Each row is a tuple of the frame number and
    # value for that row.
    num_rows = 0
    for (frame_index, frame_classes) in video_classes:
      assert len(frame_classes) == 1
      assert frame_classes[0].shape[0] == 1
      print(frame_classes[0])
      num_rows += 1
    assert num_rows == db.table('test_mxnet_raw').num_rows()

    print(db.summarize())
Пример #13
0
# we define a job later on.

# Let's write a pipeline that reads our images, resizes them, and writes them
# back out as files to the filesystem.

# Since the input images are compressed, we decompress them with the
# ImageDecoder
frame = db.ops.ImageDecoder(img=compressed_images)

resized = db.ops.Resize(frame=frame, width=640, height=360)

# Rencode the image to jpg
encoded_frame = db.ops.ImageEncoder(frame=resized, format='jpg')

# Write the compressed images to files
output = db.sinks.Files(input=encoded_frame)

resized_paths = ['resized-1.jpg', 'resized-2.jpg', 'resized-3.jpg']

job = Job(op_args={
    compressed_images: {'paths': image_paths},
    output: {'paths': resized_paths}
})

db.run(output=output, jobs=[job])

print('Finished! Wrote the following images: ' + ', '.join(resized_paths))

# If you want to learn how write your own custom Source or Sink in C++, check
# out tutorials 09_defining_cpp_sources.py and 10_defining_cpp_sinks.py
Пример #14
0
cluster_id, cameras, images, points3d = sample(cluster_id, cameras, images,
                                               points3d)

output = db.sinks.Column(
    columns={
        'cluster_id': cluster_id,
        'cameras': cameras,
        'images': images,
        'points3d': points3d
    })

job = Job(
    op_args={
        image_ids:
        db.table(args.extraction_table).column('image_id'),
        pair_image_ids:
        db.table(args.matching_table).column('pair_image_ids'),
        two_view_geometries:
        db.table(args.matching_table).column('two_view_geometries'),
        keypoints:
        db.table(args.extraction_table).column('keypoints'),
        camera:
        db.table(args.extraction_table).column('camera'),
        output:
        args.output_table
    })

output_tables = db.run(output, [job], force=True)
print(db.summarize())
Пример #15
0
    # the frame column (we will say how to sample when specifying a job).
    sliced_frame = frame.slice()

    # We process the sampled frame same as before.
    hist = db.ops.Histogram(frame=sliced_frame)
    unsliced_hist = hist.unslice()

    output_op = db.ops.Output(columns=[unsliced_hist])

    # For each job, you can specify how sampling should be performed for
    # a specific column. In the same way we used the op_args argument to bind
    # a table to an input column, we bind a sampling directive to strided_frame.
    job = Job(
        op_args={
            frame: db.table('example').column('frame'),
            # The "strided" sampling mode will run over # every 8th frame,
            # i.e. frames [0, 8, 16, ...]
            sliced_frame: db.partitioner.all(500),
            output_op: 'example_hist_sliced'
        })
    bulk_job = BulkJob(output=output_op, jobs=[job])
    output_tables = db.run(bulk_job, force=True, pipeline_instances_per_node=2)

    # Loop over the column's rows. Each row is a tuple of the frame number and
    # value for that row.
    video_hists = output_tables[0].load(['histogram'], parsers.histograms)
    num_rows = 0
    for (frame_index, frame_hists) in video_hists:
        assert len(frame_hists) == 3
        assert frame_hists[0].shape[0] == 16
        num_rows += 1
    print(num_rows)
Пример #16
0
 def job(self, db, ty):
     frame, frame_info = db.table('test').as_op().all()
     histogram = db.ops.Histogram(frame=frame,
                                  frame_info=frame_info,
                                  device=ty)
     return Job(columns=[histogram], name='test_hist')
Пример #17
0
frame = db.ops.FrameInput()
caffe_frame = db.ops.CaffeInput(frame=frame,
                                args=caffe_args,
                                device=DeviceType.CPU)
cls_prob, rois, fc7 = db.ops.FasterRCNN(caffe_input=caffe_frame,
                                        args=caffe_args,
                                        device=DeviceType.GPU)
bboxes, feature = db.ops.FasterRCNNOutput(cls_prob=cls_prob,
                                          rois=rois,
                                          fc7=fc7,
                                          args=caffe_args,
                                          device=DeviceType.CPU)
output = db.ops.Output(columns=[bboxes, feature])

job = Job(op_args={
    frame: input_table.column('frame'),
    output: input_table.name() + '_detections'
})
[output] = db.run(output=output,
                  jobs=[job],
                  pipeline_instances_per_node=1,
                  work_packet_size=10,
                  io_packet_size=40,
                  force=True)

output = db.table(input_table.name() + '_detections')

output.profiler().write_trace('detect_test.trace')

print('Extracting frames...')

Пример #18
0
sliced_frame = db.streams.Slice(frame, partitioner=scene_partitions)

# Then we perform background subtraction and indicate we need 60 prior
# frames to produce correct output
masked_frame = db.ops.BackgroundSubtraction(frame=sliced_frame,
                                            alpha=0.02,
                                            threshold=0.05,
                                            bounded_state=60)
# Since the background subtraction operation is done, we can unslice the
# sequence to join it back into a single contiguous stream. You must unslice
# sequences before feeding them back into sinks
unsliced_frame = db.streams.Unslice(masked_frame)

output = db.sinks.Column(columns={'frame': unsliced_frame})
job = Job(op_args={
    frame: static_table.column('frame'),
    output: '04_masked_video',
})
[table] = db.run(output=output, jobs=[job], force=True)

table.column('frame').save_mp4('04_masked')

videos = []
videos.append('04_masked.mp4')

# If you look at around 10 seconds in the output video, you should see a
# sharp transition in the output at the same time as the scene changes. This
# transition is the first cut we introduced using the slicing operator at frame
# 5350. If you look at 23 seconds, you should see smearing as the video changes
# scenes without a cut. This smearing is because we didn't introduce a cut at
# the right place in the second sequence (5400, 5830).
Пример #19
0
    def handle(self, *args, **options):
        face_labeler = Labeler.objects.get(name=options['labeler'])
        feature_labeler, _ = Labeler.objects.get_or_create(name='facenet')

        with open(options['path']) as f:
            paths = [s.strip() for s in f.readlines()]

        with Database() as db:
            db.register_op('EmbedFaces', [('frame', ColumnType.Video), 'bboxes'], ['embeddings'])
            db.register_python_kernel('EmbedFaces', DeviceType.CPU, cwd + '/embed_kernel.py')

            frame = db.ops.FrameInput()
            frame_strided = frame.sample()
            bboxes = db.ops.Input()
            embeddings = db.ops.EmbedFaces(frame=frame_strided, bboxes=bboxes)
            output = db.ops.Output(columns=[embeddings])

            jobs = []
            face_insts = []
            for path in paths:
                video = Video.objects.get(path=path)

                faces = Face.objects.filter(person__frame__video=video, labeler=face_labeler) \
                                            .select_related('person__frame') \
                                            .order_by('person__frame__video__id', 'person__frame__number')
                faces = [f for f in faces if f.bbox_x2 - f.bbox_x1 >= .04]

                frame_numbers = []
                rows = []
                cur_frame = None
                insts = []
                for f in faces:
                    if f.person.frame.id != cur_frame:
                        cur_frame = f.person.frame.id
                        rows.append([])
                        frame_numbers.append(f.person.frame.number)

                    rows[-1].append(db.protobufs.BoundingBox(
                        x1=f.bbox_x1, x2=f.bbox_x2, y1=f.bbox_y1, y2=f.bbox_y2))
                    insts.append(f.id)
                face_insts.append(insts)

                bbox_table = db.new_table(
                    path+'_bboxes', ['bboxes'], [[r] for r in rows], fn=writers.bboxes, force=True)

                bbox_table = db.table(path+'_bboxes')

                jobs.append(Job(op_args={
                    frame: db.table(path).column('frame'),
                    frame_strided: db.sampler.gather(frame_numbers),
                    bboxes: bbox_table.column('bboxes'),
                    output: path+'_embeddings'
                }))

            bulk_job = BulkJob(output=output, jobs=jobs)
            output_tables = db.run(bulk_job, force=True, pipeline_instances_per_node=1)
            output_tables = [db.table(path+'_embeddings') for path in paths]

            features = []
            for t, path, insts in zip(output_tables, paths, face_insts):
                inst_idx = 0
                embs = t.column('embeddings').load()
                for _, emb in embs:
                    for i in range(0, len(emb), 512):
                        e = np.frombuffer(emb[i:i+512], dtype=np.float32)
                        features.append(FaceFeatures(
                            features=json.dumps(e.tolist()),
                            face_id=insts[inst_idx],
                            labeler=feature_labeler))
                        inst_idx += 1
            FaceFeatures.objects.bulk_create(features)
Пример #20
0
    # The Op DAG only sees the raw frames. For example, this table is stored
    # as compressed video.
    def make_blurred_frame():
        frame = db.ops.FrameInput()

        blurred_frame = db.ops.Blur(frame=frame, kernel_size=3, sigma=0.5)
        return frame, blurred_frame

    # By default, if an Op outputs a frame with 3 channels with type uint8,
    # those frames will be compressed using video encoding. No other frame
    # type is currently compressed.
    frame, blurred_frame = make_blurred_frame()
    output_op = db.ops.Output(columns=[blurred_frame])
    job = Job(
        op_args={
            frame: db.table('example').column('frame'),
            output_op: 'output_table_name',
        })
    bulk_job = BulkJob(output=output_op, jobs=[job])
    db.run(bulk_job, force=True)

    frame, blurred_frame = make_blurred_frame()
    # The compression parameters can be controlled by annotating the column
    low_quality_frame = blurred_frame.compress_video(quality=35)
    output_op = db.ops.Output(columns=[low_quality_frame])
    job = Job(
        op_args={
            frame: db.table('example').column('frame'),
            output_op: 'low_quality_table',
        })
    bulk_job = BulkJob(output=output_op, jobs=[job])
Пример #21
0
db.load_op(os.path.join(cwd, 'op_cpp/build/libextraction_op.so'),
           os.path.join(cwd, 'op_cpp/build/siftExtraction_pb2.py'))

image_ids = db.sources.Column()
frames = db.sources.FrameColumn()

# run SIFT extractions
keypoints, descriptors, cameras = db.ops.SiftExtraction(image_ids=image_ids,
                                                        frames=frames)

output = db.sinks.Column(
    columns={
        'image_id': image_ids,
        'keypoints': keypoints,
        'descriptors': descriptors,
        'camera': cameras
    })

job = Job(
    op_args={
        image_ids: db.table(args.input_table).column('image_id'),
        frames: db.table(args.input_table).column('frame'),
        output: args.output_table
    })

output_tables = db.run(output, [job],
                       force=True,
                       io_packet_size=args.packet_size,
                       work_packet_size=args.packet_size)
print(db.summarize())
Пример #22
0
        facenet_input = db.ops.FacenetInput(
            frame = frame, frame_info = frame_info,
            args = facenet_args,
            device = DeviceType.GPU)
        facenet = db.ops.Facenet(
            facenet_input = facenet_input,
            frame_info = frame_info,
            args = facenet_args,
            device = DeviceType.GPU)
        facenet_output = db.ops.FacenetOutput(
            facenet_output = facenet,
            frame_info = frame_info,
            args = facenet_args)

        job = Job(columns = [facenet_output], name = 'example_faces_{}'.format(scale))

        output = db.run(job, force=True, work_item_size=5)
        outputs.append(output)

    all_bboxes = [
        [box for (_, box) in out.load(['bboxes'], parsers.bboxes)]
        for out in outputs]

    nms_bboxes = []
    frames = len(all_bboxes[0])
    runs = len(all_bboxes)
    for fi in range(frames):
        frame_bboxes = []
        for r in range(runs):
            frame_bboxes += (all_bboxes[r][fi])
Пример #23
0
def test_fault_tolerance(fault_db):
    force_kill_spawn_port = 5012
    normal_spawn_port = 5013

    def worker_killer_task(config, master_address):
        from scannerpy import ProtobufGenerator, Config, start_worker
        import time
        import grpc
        import subprocess
        import signal
        import os

        c = Config(None)

        import scanner.metadata_pb2 as metadata_types
        import scanner.engine.rpc_pb2 as rpc_types
        import scanner.types_pb2 as misc_types

        protobufs = ProtobufGenerator(config)

        # Spawn a worker that we will force kill
        script_dir = os.path.dirname(os.path.realpath(__file__))
        with open(os.devnull, 'w') as fp:
            p = subprocess.Popen(
                [
                    'python3 ' + script_dir +
                    '/spawn_worker.py {:d}'.format(force_kill_spawn_port)
                ],
                shell=True,
                stdout=fp,
                stderr=fp,
                preexec_fn=os.setsid)

            # Wait a bit for the worker to do its thing
            time.sleep(10)

            # Force kill worker process to trigger fault tolerance
            os.killpg(os.getpgid(p.pid), signal.SIGTERM)
            p.kill()
            p.communicate()

            # Wait for fault tolerance to kick in
            time.sleep(15)

            # Spawn the worker again
            subprocess.call(
                [
                    'python3 ' + script_dir +
                    '/spawn_worker.py {:d}'.format(normal_spawn_port)
                ],
                shell=True)

    master_addr = fault_db._master_address
    killer_process = Process(
        target=worker_killer_task, args=(fault_db.config, master_addr))
    killer_process.daemon = True
    killer_process.start()

    frame = fault_db.sources.FrameColumn()
    range_frame = fault_db.streams.Range(frame, 0, 20)
    sleep_frame = fault_db.ops.SleepFrame(ignore=range_frame)
    output_op = fault_db.sinks.Column(columns={'dummy': sleep_frame})

    job = Job(op_args={
        frame: fault_db.table('test1').column('frame'),
        output_op: 'test_fault',
    })

    table = fault_db.run(
        output_op, [job],
        pipeline_instances_per_node=1,
        force=True,
        show_progress=False)
    table = table[0]

    assert len([_ for _ in table.column('dummy').load()]) == 20

    # Shutdown the spawned worker
    channel = grpc.insecure_channel(
        'localhost:' + str(normal_spawn_port),
        options=[('grpc.max_message_length', 24499183 * 2)])
    worker = fault_db.protobufs.WorkerStub(channel)

    try:
        worker.Shutdown(fault_db.protobufs.Empty())
    except grpc.RpcError as e:
        status = e.code()
        if status == grpc.StatusCode.UNAVAILABLE:
            print('could not shutdown worker!')
            exit(1)
        else:
            raise ScannerException(
                'Worker errored with status: {}'.format(status))
    killer_process.join()
Пример #24
0
db = Database()
print('Ingesting video into Scanner ...')
[input_table], _ = db.ingest_videos([(movie_name, movie_path)], force=True)

sampler = db.streams.All
sampler_args = {}

print('Detecting faces...')
[bboxes_table] = pipelines.detect_faces(db, [input_table.column('frame')],
                                        sampler, sampler_args,
                                        movie_name + '_bboxes')

print('Drawing faces onto video...')
frame = db.sources.FrameColumn()
sampled_frame = sampler(frame)
bboxes = db.sources.Column()
out_frame = db.ops.DrawBox(frame=sampled_frame, bboxes=bboxes)
output = db.sinks.Column(columns={'frame': out_frame})
job = Job(
    op_args={
        frame: input_table.column('frame'),
        sampled_frame: sampler_args,
        bboxes: bboxes_table.column('bboxes'),
        output: movie_name + '_bboxes_overlay',
    })
[out_table] = db.run(output=output, jobs=[job], force=True)
out_table.column('frame').save_mp4(movie_name + '_faces')

print('Successfully generated {:s}_faces.mp4'.format(movie_name))
Пример #25
0
cameras_src = cameras = db.sources.Column()
images_src = images = db.sources.Column()
points3d_src = points3d = db.sources.Column()

cluster_id, cameras, images, points3d = db.ops.MergeMappingCPU(
    cluster_id=cluster_id,
    cameras=cameras,
    images=images,
    points3d=points3d,
    num_models=num_submodels)

output = db.sinks.Column(
    columns={
        'cluster_id': cluster_id,
        'cameras': cameras,
        'images': images,
        'points3d': points3d
    })

job = Job(
    op_args={
        cluster_id_src: db.table(args.input_table).column('cluster_id'),
        cameras_src: db.table(args.input_table).column('cameras'),
        images_src: db.table(args.input_table).column('images'),
        points3d_src: db.table(args.input_table).column('points3d'),
        output: args.output_table
    })

output_tables = db.run(output, [job], force=True)
print(db.summarize())
Пример #26
0
    inst_frame = db.ops.ImageDecoder(img=encoded_inst_files)


    @scannerpy.register_python_op(device_type=DeviceType.CPU)
    def device_combine_masks(config, cnn_mask: FrameType, inst_mask: FrameType) -> bytes:
        out = cnn_mask*inst_mask
        return pickle.dumps(out)


    combined_mask = db.ops.device_combine_masks(cnn_mask=cnn_frame, inst_mask=inst_frame)
    output_op = db.sinks.FrameColumn(columns={'frame': combined_mask})

    job = Job(
        op_args={
            encoded_cnn_files: {'paths': cnn_files, **params},
            encoded_inst_files: {'paths': inst_files, **params},

            output_op: 'masks',
        })

    start = time.time()
    [out_table] = db.run(output_op, [job], force=True, work_packet_size=opt.work_packet_size,
                         io_packet_size=opt.io_packet_size, pipeline_instances_per_node=opt.pipeline_instances_per_node,
                         tasks_in_queue_per_pu=opt.tasks_in_queue_per_pu)
    end = time.time()
    print('Total time for instance segm in scanner: {0:.3f} sec for {1} images'.format(end - start, len(cnn_files)))

    if opt.save:

        def mkdir(path_to_dir):
            if not os.path.exists(path_to_dir):
Пример #27
0
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/..')
import util

################################################################################
# This tutorial shows how to organize your videos into Collections.            #
################################################################################

with Database() as db:

    # Instead of ingesting each video into a table individually, we can group video
    # tables into a single entity called a collection. Here, we create a collection
    # called "example_collection" from the video in the previous example.
    # Collections do not incur any runtime overhead, but are simply an abstraction
    # for more easily managing your videos.
    example_video_path = util.download_video()
    input_collection, _ = db.ingest_video_collection('example_collection',
                                                     [example_video_path],
                                                     force=True)
    print(db.summarize())

    # You can use a collection the same way you use a table when defining a
    # computation. This will run your computation over every table in the
    # collection using the sampling mode you specify.
    frame = input_collection.as_op().range(0, 100)
    histogram = db.ops.Histogram(frame=frame)
    job = Job(columns=[histogram], name='example_hist_collection')
    output_collection = db.run(job, force=True)

    # You can retrieve table objects off the collection.
    output_table = output_collection.tables(0)
Пример #28
0
# table) you want to sample. Here, we indicate that we want to stride
# the frame column by 4 (select every 4th frame)
strided_frame = db.streams.Stride(frame, 4)

# We process the sampled frame same as before.
hist = db.ops.Histogram(frame=strided_frame)
output_op = db.sinks.Column(columns={'hist': hist})

# For each job, you can specify how sampling should be performed for
# a specific stream. In the same way we used the op_args argument to bind
# a table to an input column, we can bind sampling arguments to strided_frame
# to override the default striding of 4 we specified above
job = Job(
    op_args={
        frame: db.table('example').column('frame'),
        # The "strided" sampling mode will run over every 8th frame,
        # i.e. frames [0, 8, 16, ...]
        strided_frame: 8,
        output_op: 'example_hist_strided'
    })
output_tables = db.run(output_op, [job], force=True)

# Loop over the column's rows. Each row is a tuple of the frame number and
# value for that row.
video_hists = output_tables[0].column('hist').load(readers.histograms)
num_rows = 0
for frame_hists in video_hists:
    assert len(frame_hists) == 3
    assert frame_hists[0].shape[0] == 16
    num_rows += 1
assert num_rows == round(db.table('example').num_rows() / 8)
Пример #29
0
def main(movie_path):
    total_start = time.time()

    print('Detecting shots in movie {}'.format(movie_path))
    movie_name = os.path.basename(movie_path)

    # Use GPU kernels if we have a GPU
    db = Database()

    print('Loading movie into Scanner database...')
    s = time.time()

    if db.has_gpu():
        device = DeviceType.GPU
    else:
        device = DeviceType.CPU

    ############ ############ ############ ############
    # 0. Ingest the video into the database
    ############ ############ ############ ############
    [movie_table], _ = db.ingest_videos([(movie_name, movie_path)], force=True)
    print('Time: {:.1f}s'.format(time.time() - s))
    print('Number of frames in movie: {:d}'.format(movie_table.num_rows()))

    s = time.time()
    ############ ############ ############ ############
    # 1. Run Histogram over the entire video in Scanner
    ############ ############ ############ ############
    print('Computing a color histogram for each frame...')
    frame = db.sources.FrameColumn()
    histogram = db.ops.Histogram(frame=frame, device=device)
    output = db.sinks.Column(columns={'histogram': histogram})
    job = Job(op_args={
        frame: movie_table.column('frame'),
        output: movie_name + '_hist'
    })
    [hists_table] = db.run(output=output, jobs=[job], force=True)
    print('\nTime: {:.1f}s, {:.1f} fps'.format(
        time.time() - s,
        movie_table.num_rows() / (time.time() - s)))

    s = time.time()
    ############ ############ ############ ############
    # 2. Load histograms and compute shot boundaries
    #    in python
    ############ ############ ############ ############
    print('Computing shot boundaries...')
    # Read histograms from disk
    hists = [
        h for h in hists_table.column('histogram').load(readers.histograms)
    ]
    boundaries = compute_shot_boundaries(hists)
    print('Found {:d} shots.'.format(len(boundaries)))
    print('Time: {:.1f}s'.format(time.time() - s))

    s = time.time()
    ############ ############ ############ ############
    # 3. Create montage in Scanner
    ############ ############ ############ ############
    print('Creating shot montage...')

    row_length = min(16, len(boundaries))
    rows_per_item = 1
    target_width = 256

    # Compute partial row montages that we will stack together
    # at the end
    item_size = row_length * rows_per_item

    starts_remainder = len(boundaries) % item_size
    evenly_divisible = (starts_remainder == 0)
    if not evenly_divisible:
        boundaries = boundaries[0:len(boundaries) - starts_remainder]

    frame = db.sources.FrameColumn()
    gather_frame = db.streams.Gather(frame, boundaries)
    sliced_frame = db.streams.Slice(gather_frame,
                                    partitioner=db.partitioner.all(item_size))
    montage = db.ops.Montage(frame=sliced_frame,
                             num_frames=row_length * rows_per_item,
                             target_width=target_width,
                             frames_per_row=row_length,
                             device=device)
    sampled_montage = db.streams.Gather(montage)
    output = db.sinks.Column(
        columns={'montage': db.streams.Unslice(sampled_montage).lossless()})

    job = Job(
        op_args={
            frame:
            movie_table.column('frame'),
            sampled_montage: [[item_size - 1]
                              for _ in range(len(boundaries) // item_size)],
            output:
            'montage_image'
        })
    [montage_table] = db.run(output=output, jobs=[job], force=True)

    # Stack all partial montages together
    montage_img = np.zeros((1, target_width * row_length, 3), dtype=np.uint8)
    for img in montage_table.column('montage').load():
        img = np.flip(img, 2)
        montage_img = np.vstack((montage_img, img))

    print('')
    print('Time: {:.1f}s'.format(time.time() - s))

    ############ ############ ############ ############
    # 4. Write montage to disk
    ############ ############ ############ ############
    cv2.imwrite('shots.jpg', montage_img)
    print('Successfully generated shots.jpg')
    print('Total time: {:.2f} s'.format(time.time() - total_start))
Пример #30
0
    frame, frame_info = input_table.as_op().all(item_size=50)
    cpm2_input = db.ops.CPM2Input(frame=frame,
                                  frame_info=frame_info,
                                  args=cpm2_args,
                                  device=DeviceType.GPU)
    cpm2_resized_map, cpm2_joints = db.ops.CPM2(cpm2_input=cpm2_input,
                                                frame_info=frame_info,
                                                args=cpm2_args,
                                                device=DeviceType.GPU)
    poses = db.ops.CPM2Output(cpm2_resized_map=cpm2_resized_map,
                              cpm2_joints=cpm2_joints,
                              frame_info=frame_info,
                              args=cpm2_args)

    job = Job(columns=[poses], name='example_poses')
    output = db.run(job, True)

    print('Extracting frames...')
    video_poses = [
        pose for (_, pose) in output.columns('poses').load(parsers.poses)
    ]
    video_frames = [f[0] for _, f in db.table('example').load(['frame'])]

    print('Writing output video...')
    frame_shape = video_frames[0].shape
    output = cv2.VideoWriter('example_poses.mkv',
                             cv2.VideoWriter_fourcc(*'X264'), 24.0,
                             (frame_shape[1], frame_shape[0]))

    for (frame, frame_poses) in zip(video_frames, video_poses):