Пример #1
0
    TEST_DATASET = SunrgbdDetectionVotesDataset(
        "val",
        num_points=NUM_POINT,
        augment=False,
        use_color=FLAGS.use_color,
        use_height=(not FLAGS.no_height),
        use_v1=(not FLAGS.use_sunrgbd_v2),
    )
elif FLAGS.dataset == "scannet":
    sys.path.append(os.path.join(ROOT_DIR, "scannet"))
    from scannet_detection_dataset import ScannetDetectionDataset, MAX_NUM_OBJ
    from model_util_scannet import ScannetDatasetConfig

    DATASET_CONFIG = ScannetDatasetConfig()
    TEST_DATASET = ScannetDetectionDataset(
        "val", num_points=NUM_POINT, augment=False, use_color=FLAGS.use_color, use_height=(not FLAGS.no_height)
    )
elif FLAGS.dataset == "fsn":
    sys.path.append(os.path.join(ROOT_DIR, "fsn"))
    from fsn_detection_dataset import FSNDetectionDataset, MAX_NUM_OBJ
    from model_util_fsn import FSNDatasetConfig

    DATASET_CONFIG = FSNDatasetConfig()
    TEST_DATASET = FSNDetectionDataset(
        "val" if not FLAGS.overfit else "overfit",
        num_points=NUM_POINT,
        augment=False,
        use_color=FLAGS.use_color,
        use_height=(not FLAGS.no_height),
        is_eval=True,
        quick=FLAGS.val_quick,
Пример #2
0
        num_points=NUM_POINT,
        augment=False,
        use_color=FLAGS.use_color,
        use_height=(not FLAGS.no_height),
        use_v1=(not FLAGS.use_sunrgbd_v2),
        labeled_sample_list=FLAGS.labeled_sample_list,
        test_transductive=FLAGS.transductive)
elif FLAGS.dataset == 'scannet':
    sys.path.append(os.path.join(ROOT_DIR, 'scannet'))
    from scannet_detection_dataset import ScannetDetectionDataset
    from model_util_scannet import ScannetDatasetConfig
    DATASET_CONFIG = ScannetDatasetConfig()
    TEST_DATASET = ScannetDetectionDataset(
        split_set,
        num_points=NUM_POINT,
        augment=False,
        use_color=FLAGS.use_color,
        use_height=(not FLAGS.no_height),
        labeled_sample_list=FLAGS.labeled_sample_list,
        test_transductive=FLAGS.transductive)
else:
    print('Unknown dataset %s. Exiting...' % (FLAGS.dataset))
    exit(-1)
print(len(TEST_DATASET))
TEST_DATALOADER = DataLoader(TEST_DATASET,
                             batch_size=BATCH_SIZE,
                             shuffle=FLAGS.shuffle_dataset,
                             num_workers=4,
                             worker_init_fn=my_worker_init_fn)

# Init the model and optimzier
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Пример #3
0
        use_v1=(not FLAGS.use_sunrgbd_v2))
    TEST_DATASET = SunrgbdDetectionVotesDataset(
        'val',
        num_points=NUM_POINT,
        augment=False,
        use_color=FLAGS.use_color,
        use_height=(not FLAGS.no_height),
        use_v1=(not FLAGS.use_sunrgbd_v2))
elif FLAGS.dataset == 'scannet':
    sys.path.append(os.path.join(ROOT_DIR, 'scannet'))
    from scannet_detection_dataset import ScannetDetectionDataset, MAX_NUM_OBJ
    from model_util_scannet import ScannetDatasetConfig
    DATASET_CONFIG = ScannetDatasetConfig()
    TRAIN_DATASET = ScannetDetectionDataset('train',
                                            num_points=NUM_POINT,
                                            augment=True,
                                            use_color=FLAGS.use_color,
                                            use_height=(not FLAGS.no_height))
    TEST_DATASET = ScannetDetectionDataset('val',
                                           num_points=NUM_POINT,
                                           augment=False,
                                           use_color=FLAGS.use_color,
                                           use_height=(not FLAGS.no_height))
else:
    print('Unknown dataset %s. Exiting...' % (FLAGS.dataset))
    exit(-1)
print(len(TRAIN_DATASET), len(TEST_DATASET))
TRAIN_DATALOADER = DataLoader(TRAIN_DATASET,
                              batch_size=BATCH_SIZE,
                              shuffle=True,
                              num_workers=4,
Пример #4
0
import trimesh
import numpy as np

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader


NUM_POINT=40000

DATASET_CONFIG = ScannetDatasetConfig()
TRAIN_DATASET = ScannetDetectionDataset('train',
                                        num_points=NUM_POINT,
                                        augment=False,
                                        use_color=False,
                                        use_height=True,
                                        overfit=False)

TRAIN_DATALOADER = DataLoader(TRAIN_DATASET,
                              batch_size=1,
                              shuffle=False,
                              num_workers=6,)

# -- from pc_utils.py write_oriented_bbox
def heading2rotmat(heading_angle):
    rotmat = np.zeros((3,3))
    rotmat[2,2] = 1
    cosval = np.cos(heading_angle)
    sinval = np.sin(heading_angle)
    rotmat[0:2,0:2] = np.array([[cosval, -sinval],[sinval, cosval]])