Пример #1
0
def test_violin():
    sc.pl.set_rcParams_defaults()
    sc.set_figure_params(dpi=80, color_map='viridis')

    pbmc = sc.datasets.pbmc68k_reduced()
    sc.pl.violin(pbmc, ['n_genes', 'percent_mito', 'n_counts'],
                 stripplot=True,
                 multi_panel=True,
                 jitter=True,
                 show=False)
    save_and_compare_images('master_violin_multi_panel', tolerance=40)
Пример #2
0
def make_violin_images_multi():
    ####
    # tests based on pbmc68k_reduced dataset
    sc.pl.set_rcParams_defaults()
    sc.set_figure_params(dpi=80, color_map='viridis')

    pbmc = sc.datasets.pbmc68k_reduced()
    sc.pl.violin(pbmc, ['n_genes', 'percent_mito', 'n_counts'],
                 stripplot=False,
                 multi_panel=True,
                 jitter=False)
    pl.savefig("master_violin_multi_panel.png", dpi=80)
    pl.close()
Пример #3
0
def test_violin():
    sc.pl.set_rcParams_defaults()
    sc.set_figure_params(dpi=80, color_map='viridis')

    pbmc = sc.datasets.pbmc68k_reduced()
    outfile = NamedTemporaryFile(suffix='.png', prefix='scanpy_test_violin_', delete=False)
    sc.pl.violin(pbmc, ['n_genes', 'percent_mito', 'n_counts'],
                 stripplot=True, multi_panel=True, jitter=True, show=False)
    pl.savefig(outfile.name, dpi=80)
    pl.close()

    res = compare_images(ROOT + '/master_violin_multi_panel.png', outfile.name, 40)

    assert res is None, res

    os.remove(outfile.name)
Пример #4
0
# -*- coding: utf-8 -*-
import matplotlib as mpl

mpl.use('agg')
import matplotlib.pyplot as pl

import scanpy.api as sc

sc.set_figure_params(dpi=80, color_map='viridis')


def make_heatmaps():
    adata = sc.datasets.krumsiek11()

    # make heatmap
    sc.pl.heatmap(adata, adata.var_names, 'cell_type', use_raw=False)
    pl.savefig('master_heatmap.png', dpi=80)
    pl.close()

    # make heatmap with continues data
    adata.obs['Gata2'] = adata.X[:, 0]
    sc.pl.heatmap(adata,
                  adata.var_names,
                  'Gata2',
                  use_raw=False,
                  num_categories=4,
                  figsize=(4.5, 5))
    pl.savefig('master_heatmap2.png', dpi=80)
    pl.close()

df = df.replace(regex=r' ', value='_').replace(regex=r'/', value='_')
df.to_csv('%s/DEGs/cell_groups.csv' %(outdir), sep="\t", index=False)

grpList = ','.join(list(set(df['sampleCluster'].values)))
os.system('Rscript %s/diff_expr.R %s/DEGs/expr.csv %s/DEGs %s/DEGs/cell_groups.csv %s kw 0.01 5000 TRUE 4 v2 1 conover FALSE median FALSE' %(indir, outdir, outdir, outdir, outdir))

## Trajectory analysis
cell_annot = df.loc[rpkms.columns]

import numpy as np
import pandas as pd
import matplotlib.pyplot as pl
from matplotlib import rcParams
import scanpy.api as sc
rcParams['pdf.fonttype'] = 42
sc.set_figure_params(color_map='viridis')

expr_data = rpkms.copy()
sample_cluster=cell_annot['sampleCluster']

X = expr_data.values
gene_names = list(expr_data.index)
sample_names = list(expr_data.columns)
    
adata = sc.AnnData(X.transpose())
adata.var_names = gene_names
adata.row_names = sample_names

sc.settings.figdir = outdir

genes = list(set(list(set(sigVarGenes))
Пример #6
0
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""

import numpy as np
import pandas as pd
import matplotlib.pyplot as pl
import scanpy.api as sc

#print("hello world")
#pl.plot(arange(5))

sc.set_figure_params(
    dpi=100)  # low dpi (dots per inch) yields small inline figures
sc.settings.verbosity = 3  # verbosity: errors (0), warnings (1), info (2), hints (3)
sc.logging.print_versions()

results_file = '../results/paga_test/planaria_extended.h5ad'

paga_plot_params = dict(legend_fontsize=5,
                        solid_edges='confidence_tree',
                        dashed_edges='confidence',
                        root='neoblast 1',
                        layout='rt_circular',
                        node_size_scale=0.5,
                        node_size_power=0.9,
                        max_edge_width=0.7,
                        fontsize=3.5)