Пример #1
0
    pz = np.vectorize(ngp)

    ##
    bz = lambda z: bz_callmodel(z, mlim)

    nbar = get_shot(band, mlim)
    nbar /= (4. * np.pi / 41253.)  ##  Sq. deg. to steradian.

    ##
    int_frac = 0.06
    nbar_wint = (1.0 + int_frac) * nbar

    decband = setup[band]['decband']
    colors = setup[band]['colors']

    peakz = _peakz(pz)

    ##  Hard p(z) limits.
    zmin = 0.01
    zmax = 10.00

    ##  LSST whitebook p(z).
    ##  pz             =  lambda z:  whitebook_pz(z, ilim = 25.30)

    ##  Change in Ckg with p(z), b(z), nbar -> p'(z), b'(z) and nbar'.
    ##  We assume the z < 1 population of likely red galaxies has a bias of 2.04 at a mean z 0.87;
    ##  bzz            =  lambda z:  bz(z)  if  z > 1.0  else  2.04
    bzz = lambda z: bz(z) if z > 3.0 else (1. + z)

    ##  Interloper GP rewrite.
    _, _, _, _, _ngp = gp_pz(band, 'Degraded', 5.5)
Пример #2
0
    colors = setup[band]['colors']

    spec_mlim = setup[band]['spec-maglim']
    phot_mlim = setup[band]['phot-maglim']

    ##  Spectroscopic sample p(z) and b(z).
    ps = get_pz(band)
    bs = lambda z: bz_callmodel(z, spec_mlim)

    ##  Get the z percentiles for this dropout p(z).
    percentiles = percentiles(ps, printit=True)

    ##  Photometric sample p(z).
    pp = get_pz(band)

    peakz = _peakz(ps)

    zmin = peakz - 1.0
    zmax = peakz + 1.0

    ##  Get dropout Schechter photometric sample counts for given band.
    root = os.environ['LBGCMB']
    data = np.loadtxt(root + '/dropouts/schechter/dat/%s' % file)

    ##  Number of photometric galaxies per sq. deg. for given detection band limit.
    ms = data[:, 0][::-1]
    Npz = data[:, 1][::-1]

    ##  Cut to half mags. above 24.0
    valid = (ms % 0.5 == 0) & (ms >= 24.0) & (ms < 26.5)