pz = np.vectorize(ngp) ## bz = lambda z: bz_callmodel(z, mlim) nbar = get_shot(band, mlim) nbar /= (4. * np.pi / 41253.) ## Sq. deg. to steradian. ## int_frac = 0.06 nbar_wint = (1.0 + int_frac) * nbar decband = setup[band]['decband'] colors = setup[band]['colors'] peakz = _peakz(pz) ## Hard p(z) limits. zmin = 0.01 zmax = 10.00 ## LSST whitebook p(z). ## pz = lambda z: whitebook_pz(z, ilim = 25.30) ## Change in Ckg with p(z), b(z), nbar -> p'(z), b'(z) and nbar'. ## We assume the z < 1 population of likely red galaxies has a bias of 2.04 at a mean z 0.87; ## bzz = lambda z: bz(z) if z > 1.0 else 2.04 bzz = lambda z: bz(z) if z > 3.0 else (1. + z) ## Interloper GP rewrite. _, _, _, _, _ngp = gp_pz(band, 'Degraded', 5.5)
colors = setup[band]['colors'] spec_mlim = setup[band]['spec-maglim'] phot_mlim = setup[band]['phot-maglim'] ## Spectroscopic sample p(z) and b(z). ps = get_pz(band) bs = lambda z: bz_callmodel(z, spec_mlim) ## Get the z percentiles for this dropout p(z). percentiles = percentiles(ps, printit=True) ## Photometric sample p(z). pp = get_pz(band) peakz = _peakz(ps) zmin = peakz - 1.0 zmax = peakz + 1.0 ## Get dropout Schechter photometric sample counts for given band. root = os.environ['LBGCMB'] data = np.loadtxt(root + '/dropouts/schechter/dat/%s' % file) ## Number of photometric galaxies per sq. deg. for given detection band limit. ms = data[:, 0][::-1] Npz = data[:, 1][::-1] ## Cut to half mags. above 24.0 valid = (ms % 0.5 == 0) & (ms >= 24.0) & (ms < 26.5)