def test_should_pass_through_return_value_if_no_exception_was_raised(self): def fn(x): return x.upper() with TestPipeline() as p: result = (p | beam.Create([SOME_VALUE_1]) | MapOrLog(SOME_FN)) assert_that(result, equal_to([fn(SOME_VALUE_1)]))
def test_should_increase_error_metric_counter_if_exception_was_raised( self): with TestPipeline() as p: _ = ( # noqa: F841 p | beam.Create([SOME_VALUE_1]) | MapOrLog( FN_RAISING_EXCEPTION, error_count=ERROR_COUNT_METRIC_NAME)) assert get_counter_value(p.run(), ERROR_COUNT_METRIC_NAME) == 1
def add_read_source_to_extracted_xml_pipeline_steps(p, opt, get_pipeline_output_file): if opt.lxml_file_list: lxml_urls = p | ReadFileList( opt.lxml_file_list, column=opt.lxml_file_column, limit=opt.limit) annotated_lxml = (lxml_urls | PreventFusion( ) | "ReadLxmlContent" >> TransformAndCount( MapOrLog( lambda url: { DataProps.SOURCE_FILENAME: url, DataProps.STRUCTURED_DOCUMENT: load_structured_document(url ) }, error_count=MetricCounters.READ_LXML_ERROR), MetricCounters.FILES)) extract_tag_scope = None else: annotated_lxml, extract_tag_scope = add_read_pdfs_to_annotated_lxml_pipeline_steps( p, opt, get_pipeline_output_file) extracted_xml = (annotated_lxml | "ExtractToXml" >> MapOrLog( lambda v: remove_keys_from_dict(extend_dict( v, { DataProps.EXTRACTED_XML: extract_annotated_structured_document_to_xml( v[DataProps.STRUCTURED_DOCUMENT], tag_scope=extract_tag_scope) }), keys_to_remove= {DataProps.STRUCTURED_DOCUMENT}), error_count=MetricCounters.EXTRACT_TO_XML_ERROR)) if opt.use_grobid: enhancer = GrobidXmlEnhancer(opt.grobid_url, start_service=opt.start_grobid_service) extracted_xml = (extracted_xml | "GrobidEnhanceXml" >> MapOrLog( lambda v: extend_dict(v, { DataProps.EXTRACTED_XML: enhancer(v[DataProps.EXTRACTED_XML]) }), error_count=MetricCounters.GROBID_ERROR)) return extracted_xml
def get_step_transform(step): step_name = str(step) return step_name >> MapOrLog( execute_or_skip_step(step), log_fn=lambda e, v: (get_logger().warning( 'caught exception (ignoring item): %s, source file: %s, step: %s', e, v[DataProps.SOURCE_FILENAME], step_name, exc_info=e)), error_count=get_step_error_counter(step))
def add_read_pdfs_to_grobid_xml_pipeline_steps(p, opt): grobid_transformer = grobid_service(opt.grobid_url, opt.grobid_action, start_service=opt.start_grobid_service) return (p | PdfUrlSource(opt) | PreventFusion() | ReadPdfContent( ) | "Grobid" >> MapOrLog(lambda v: extend_dict( v, { DataProps.EXTRACTED_XML: grobid_transformer( (v[DataProps.SOURCE_FILENAME], v[DataProps.PDF_CONTENT]))[1] }), error_count=MetricCounters.GROBID_ERROR))
def test_should_skip_entries_that_cause_an_exception(self): with TestPipeline() as p: result = (p | beam.Create([SOME_VALUE_1]) | MapOrLog(FN_RAISING_EXCEPTION)) assert_that(result, equal_to([]))
def configure_pipeline(p, opt): image_size = ((opt.image_width, opt.image_height) if opt.image_width and opt.image_height else None) page_range = opt.pages first_page = page_range[0] if page_range else 1 xml_mapping = parse_xml_mapping(opt.xml_mapping_path) if opt.lxml_path: lxml_xml_file_pairs = ( p | beam.Create( [[ join_if_relative_path(opt.base_data_path, s) for s in [opt.lxml_path, opt.xml_path] ]]) | "FindFilePairs" >> TransformAndLog( beam.FlatMap(lambda patterns: islice( find_file_pairs_grouped_by_parent_directory_or_name( patterns), opt.limit)), log_prefix='file pairs: ', log_level='debug') | PreventFusion() | "ReadFileContent" >> beam.Map( lambda filenames: { 'source_filename': filenames[0], 'xml_filename': filenames[1], 'lxml_content': read_all_from_path(filenames[0]), 'xml_content': read_all_from_path(filenames[1]) })) elif opt.pdf_path or opt.pdf_xml_file_list: if opt.pdf_xml_file_list: pdf_xml_url_pairs = ( p | "ReadFilePairUrls" >> ReadDictCsv(opt.pdf_xml_file_list, limit=opt.limit) | "TranslateFilePairUrls" >> beam.Map(lambda row: (row['source_url'], row['xml_url']))) else: pdf_xml_url_pairs = (p | beam.Create([[ join_if_relative_path(opt.base_data_path, s) for s in [opt.pdf_path, opt.xml_path] ]]) | "FindFilePairs" >> TransformAndLog( beam.FlatMap(lambda patterns: islice( find_file_pairs_grouped_by_parent_directory_or_name( patterns), opt.limit)), log_prefix='file pairs: ', log_level='debug')) pdf_xml_file_pairs = ( pdf_xml_url_pairs | PreventFusion() | "ReadFileContent" >> TransformAndCount( beam.Map( lambda filenames: { 'source_filename': filenames[0], 'xml_filename': filenames[1], 'pdf_content': read_all_from_path(filenames[0]), 'xml_content': read_all_from_path(filenames[1]) }), MetricCounters.FILE_PAIR)) lxml_xml_file_pairs = ( pdf_xml_file_pairs | "ConvertPdfToLxml" >> MapOrLog( lambda v: remove_keys_from_dict( extend_dict( v, { 'lxml_content': convert_pdf_bytes_to_lxml(v['pdf_content'], path=v['source_filename' ], page_range=page_range) }), # we don't need the pdf_content unless we are writing tf_records None if opt.save_tfrecords else {'pdf_content'}), log_fn=lambda e, v: (get_logger().warning( 'caught exception (ignoring item): %s, pdf: %s, xml: %s', e, v['source_filename'], v['xml_filename'], exc_info=e)), error_count=MetricCounters.CONVERT_PDF_TO_LXML_ERROR)) else: raise RuntimeError('either lxml-path or pdf-path required') if opt.save_png or opt.save_tfrecords: with_pdf_png_pages = ( (lxml_xml_file_pairs if opt.save_tfrecords else pdf_xml_file_pairs) | "ConvertPdfToPng" >> MapOrLog( lambda v: remove_keys_from_dict( extend_dict( v, { 'pdf_png_pages': list( pdf_bytes_to_png_pages(v['pdf_content'], dpi=opt.png_dpi, image_size=image_size, page_range=page_range)) }), {'pdf_content'} # we no longer need the pdf_content ), error_count=MetricCounters.CONVERT_PDF_TO_PNG_ERROR)) if opt.save_png: _ = (with_pdf_png_pages | "SavePdfToPng" >> TransformAndLog( beam.Map(lambda v: save_pages( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v[ 'source_filename']), None, '.png.zip')), '.png', v['pdf_png_pages'])), log_fn=lambda x: get_logger().info('saved result: %s', x))) if opt.save_lxml: _ = (lxml_xml_file_pairs | "SaveLxml" >> TransformAndLog( beam.Map(lambda v: save_file_content( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v[ 'source_filename']), None, '.lxml.gz')), v[ 'lxml_content'])), log_fn=lambda x: get_logger().info('saved lxml: %s', x))) annotation_results = (( with_pdf_png_pages if opt.save_tfrecords else lxml_xml_file_pairs ) | "ConvertLxmlToSvgAndAnnotate" >> TransformAndCount( MapOrLog( lambda v: remove_keys_from_dict( extend_dict( v, { 'svg_pages': list( convert_and_annotate_lxml_content( v['lxml_content'], v['xml_content'], xml_mapping, name=v['source_filename'])) }), # Won't need the XML anymore {'lxml_content', 'xml_content'}), log_fn=lambda e, v: (get_logger().warning( 'caught exception (ignoring item): %s, source: %s, xml: %s', e, v['source_filename'], v['xml_filename'], exc_info=e)), error_count=MetricCounters.CONVERT_LXML_TO_SVG_ANNOT_ERROR), MetricCounters.PAGE, lambda v: len(v['svg_pages']))) if opt.save_svg: _ = (annotation_results | "SaveSvgPages" >> TransformAndLog( beam.Map(lambda v: save_svg_roots( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v['source_filename'] ), None, '.svg.zip')), v['svg_pages'])), log_fn=lambda x: get_logger().info('saved result: %s', x))) if opt.annotation_evaluation_csv or opt.min_annotation_percentage: annotation_evaluation_results = ( annotation_results | "EvaluateAnnotations" >> TransformAndLog( beam.Map(lambda v: remove_keys_from_dict( extend_dict( v, { 'annotation_evaluation': evaluate_document_by_page( SvgStructuredDocument(v['svg_pages'])) }), None if opt.min_annotation_percentage else {'svg_pages'})), log_fn=lambda x: get_logger().info( 'annotation evaluation result: %s: %s', x[ 'source_filename'], x['annotation_evaluation']))) if opt.save_block_png or opt.save_tfrecords: color_map = parse_color_map_from_file(opt.color_map) with_block_png_pages = ( (annotation_evaluation_results if opt.min_annotation_percentage else annotation_results) | "GenerateBlockPng" >> beam.Map(lambda v: remove_keys_from_dict( extend_dict( v, { 'block_png_pages': [ svg_page_to_blockified_png_bytes( svg_page, color_map, image_size=image_size) for svg_page in v['svg_pages'] ] }), {'svg_pages'}))) if opt.save_block_png: _ = (with_block_png_pages | "SaveBlockPng" >> TransformAndLog( beam.Map(lambda v: save_pages( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v[ 'source_filename']), None, '.block-png.zip')), '.png', v['block_png_pages'])), log_fn=lambda x: get_logger().info('saved result: %s', x))) if opt.save_tfrecords: if opt.min_annotation_percentage: filtered_pages = ( with_block_png_pages | "FilterPages" >> TransformAndCount( beam.Map(lambda v: filter_list_props_by_indices( v, get_page_indices_with_min_annotation_percentage( v['annotation_evaluation'], opt. min_annotation_percentage), {'pdf_png_pages', 'block_png_pages'})), MetricCounters.FILTERED_PAGE, lambda v: len(v['block_png_pages']))) else: filtered_pages = with_block_png_pages _ = (filtered_pages | "WriteTFRecords" >> WritePropsToTFRecord( FileSystems.join(opt.output_path, 'data'), lambda v: ({ 'input_uri': v['source_filename'] + '#page%d' % (first_page + i), 'input_image': pdf_png_page, 'annotation_uri': (v['source_filename'] + '.annot' + '#page%d' % (first_page + i)), 'annotation_image': block_png_page, 'page_no': first_page + i } for i, pdf_png_page, block_png_page in zip( range(len(v['pdf_png_pages'])), v['pdf_png_pages'], v[ 'block_png_pages'])))) if opt.annotation_evaluation_csv: annotation_evaluation_csv_name, annotation_evaluation_ext = ( os.path.splitext(opt.annotation_evaluation_csv)) _ = ( # flake8: noqa annotation_evaluation_results | "FlattenAnotationEvaluationResults" >> beam.FlatMap(lambda v: to_annotation_evaluation_csv_dict_rows( v['annotation_evaluation'], document=basename(v['source_filename']))) | "WriteAnnotationEvaluationToCsv" >> WriteDictCsv( join_if_relative_path(opt.output_path, annotation_evaluation_csv_name), file_name_suffix=annotation_evaluation_ext, columns=DEFAULT_EVALUATION_COLUMNS))
def add_read_pdfs_to_annotated_lxml_pipeline_steps(p, opt, get_pipeline_output_file): page_range = opt.pages cv_enabled = opt.cv_model_export_dir extract_tag_scope = None pdf_urls = p | PdfUrlSource(opt) lxml_content = (pdf_urls | PreventFusion() | ReadPdfContent() | "ConvertPdfToLxml" >> MapOrLog( lambda v: extend_dict( v, { DataProps.STRUCTURED_DOCUMENT: convert_pdf_bytes_to_structured_document( v[DataProps.PDF_CONTENT], path=v[DataProps.SOURCE_FILENAME], page_range=page_range) }), log_fn=lambda e, v: (get_logger().warning( 'caught exception (ignoring item): %s, pdf: %s', e, v[DataProps.SOURCE_FILENAME], exc_info=e)), error_count=MetricCounters.CONVERT_PDF_TO_LXML_ERROR)) if cv_enabled: image_size = ((opt.image_width, opt.image_height) if opt.image_width and opt.image_height else None) inference_model_wrapper = InferenceModelWrapper( opt.cv_model_export_dir) cv_predictions = ( lxml_content | "ConvertPdfToPng" >> MapOrLog( lambda v: remove_keys_from_dict( extend_dict( v, { DataProps.PDF_PNG_PAGES: list( pdf_bytes_to_png_pages( v[DataProps.PDF_CONTENT], dpi=90, # not used if the image is scaled image_size=image_size, page_range=page_range)) }), keys_to_remove={DataProps.PDF_CONTENT}), error_count=MetricCounters.CONVERT_PDF_TO_PNG_ERROR) | "ComputerVisionPrediction" >> MapOrLog( lambda v: remove_keys_from_dict(extend_dict( v, { DataProps.CV_PREDICTION_PNG_PAGES: inference_model_wrapper(v[DataProps.PDF_PNG_PAGES]), DataProps.COLOR_MAP: inference_model_wrapper.get_color_map() }), keys_to_remove= {DataProps.PDF_PNG_PAGES}), error_count=MetricCounters.CV_PREDICTION_ERROR)) if opt.save_cv_output: _ = (cv_predictions | "SaveComputerVisionOutput" >> TransformAndLog(beam.Map(lambda v: save_pages( get_pipeline_output_file(v[DataProps.SOURCE_FILENAME], OutputExt.CV_PNG), '.png', [ image_data_to_png(image_data) for image_data in v[DataProps.CV_PREDICTION_PNG_PAGES] ])), log_fn=lambda x: get_logger().info( 'saved cv output: %s', x))) cv_annotated_lxml = ( cv_predictions | "AnnotateLxmlUsingCvPrediction" >> MapOrLog(lambda v: remove_keys_from_dict(extend_dict( v, { DataProps.STRUCTURED_DOCUMENT: (annotate_structured_document_using_predicted_image_data( v[DataProps.STRUCTURED_DOCUMENT], v[DataProps.CV_PREDICTION_PNG_PAGES], v[DataProps.COLOR_MAP], tag_scope=CV_TAG_SCOPE)) }), keys_to_remove= {DataProps.PDF_PNG_PAGES }), error_count=MetricCounters.ANNOTATE_USING_PREDICTION_ERROR )) lxml_content = cv_annotated_lxml extract_tag_scope = CV_TAG_SCOPE if opt.crf_model: model = load_crf_model(opt.crf_model) crf_annotated_lxml = ( lxml_content | "AnnotateLxmlUsingCrfPrediction" >> MapOrLog( lambda v: extend_dict( v, { DataProps.STRUCTURED_DOCUMENT: predict_and_annotate_structured_document( v[DataProps.STRUCTURED_DOCUMENT], model) }), error_count=MetricCounters.ANNOTATE_USING_PREDICTION_ERROR)) lxml_content = crf_annotated_lxml extract_tag_scope = CRF_TAG_SCOPE if opt.save_annot_lxml: _ = ( # flake8: noqa lxml_content | "SaveAnnotLxml" >> TransformAndLog(beam.Map(lambda v: save_structured_document( get_pipeline_output_file( v[DataProps.SOURCE_FILENAME], get_annot_lxml_ext(crf_enabled=opt.crf_model, cv_enabled=cv_enabled)), v[ DataProps.STRUCTURED_DOCUMENT])), log_fn=lambda x: get_logger().info( 'saved annoted lxml to: %s', x))) return lxml_content, extract_tag_scope