Пример #1
0
def test_time(n_samples=1000, n_features=100, leaf_size=1, k=20):
    X = numpy.random.random([n_samples, n_features])

    print "---------------------------------------------------"
    print "%i neighbors of %i points in %i dimensions:" % (k, n_samples,
                                                           n_features)
    print "   (leaf size = %i)" % leaf_size
    print "  -------------"

    t0 = time()
    BT = BallTree(X, leaf_size)
    print "  Ball Tree construction     : %.3g sec" % (time() - t0)
    d, nbrs1 = BT.query(X, k)
    print "  total (construction+query) : %.3g sec" % (time() - t0)
    print "  -------------"

    t0 = time()
    KDT = cKDTree(X, leaf_size)
    print "  KD tree construction       : %.3g sec" % (time() - t0)
    d, nbrs2 = KDT.query(X, k)
    print "  total (construction+query) : %.3g sec" % (time() - t0)
    print "  -------------"

    print "  neighbors match: ",
    print compare_nbrs(nbrs1, nbrs2)
    print "  -------------"
Пример #2
0
def test_time(N=1000, D=100, ls=1, k=20):
    M = numpy.random.random([N,D])

    print "---------------------------------------------------"
    print "%i neighbors of %i points in %i dimensions:" % (k,N,D)
    print "   (leaf size = %i)" % ls
    print "  -------------"
    
    t0 = time()
    BT = BallTree(M,ls)
    print "  Ball Tree construction     : %.3g sec" % ( time()-t0 )
    d,nbrs1 = BT.query(M,k)
    print "  total (construction+query) : %.3g sec" % ( time()-t0 )
    print "  -------------"

    
    t0 = time()
    KDT = cKDTree(M,ls)
    print "  KD tree construction       : %.3g sec" % ( time()-t0 )
    d,nbrs2 = KDT.query(M,k)
    print "  total (construction+query) : %.3g sec" % ( time()-t0 )
    print "  -------------"
   
    print "  neighbors match: ",
    print ( compare_nbrs(nbrs1,nbrs2) )
    print "  -------------"
Пример #3
0
def test_time(n_samples=1000, n_features=100, leaf_size=1, k=20):
    X = numpy.random.random([n_samples, n_features])

    print "---------------------------------------------------"
    print "%i neighbors of %i points in %i dimensions:" % (k, n_samples, n_features)
    print "   (leaf size = %i)" % leaf_size
    print "  -------------"

    t0 = time()
    BT = BallTree(X, leaf_size)
    print "  Ball Tree construction     : %.3g sec" % (time() - t0)
    d, nbrs1 = BT.query(X, k)
    print "  total (construction+query) : %.3g sec" % (time() - t0)
    print "  -------------"


    t0 = time()
    KDT = cKDTree(X, leaf_size)
    print "  KD tree construction       : %.3g sec" % (time() - t0)
    d, nbrs2 = KDT.query(X, k)
    print "  total (construction+query) : %.3g sec" % (time() - t0)
    print "  -------------"

    print "  neighbors match: ",
    print compare_nbrs(nbrs1, nbrs2)
    print "  -------------"
        N = len(nbrs1)
        return numpy.all(nbrs1 == nbrs2)

N = 1000
ls = 1 # leaf size
k = 20
BT_results = []
KDT_results = []

for i in range(1, 10):
    print 'Iteration %s' %i
    D = i*100
    M = np.random.random([N, D])

    t0 = time()
    BT = BallTree(M, ls)
    d, nbrs1 = BT.query(M, k)
    delta = time() - t0
    BT_results.append(delta)

    t0 = time()
    KDT = cKDTree(M, ls)
    d, nbrs2 = KDT.query(M, k)
    delta = time() - t0
    KDT_results.append(delta)

    # this checks we get the correct result
    assert compare_nbrs(nbrs1,nbrs2)

xx = 100*np.arange(1, 10)
pl.plot(xx, BT_results, label='scikits.learn (BallTree)')
Пример #5
0
        return np.all(nbrs1 == nbrs2)

if __name__ == '__main__':
    n_samples = 1000
    leaf_size = 1 # leaf size
    k = 20
    BT_results = []
    KDT_results = []

    for i in range(1, 10):
        print 'Iteration %s' %i
        n_features = i*100
        X = np.random.random([n_samples, n_features])

        t0 = time()
        BT = BallTree(X, leaf_size)
        d, nbrs1 = BT.query(X, k)
        delta = time() - t0
        BT_results.append(delta)

        t0 = time()
        KDT = cKDTree(X, leaf_size)
        d, nbrs2 = KDT.query(X, k)
        delta = time() - t0
        KDT_results.append(delta)

        # this checks we get the correct result
        assert compare_nbrs(nbrs1, nbrs2)

    xx = 100 * np.arange(1, 10)
    pl.plot(xx, BT_results, label='scikits.learn (BallTree)')