Пример #1
0
if __name__ == '__main__':

    ###############################################################################
    # Generate sample data
    S = np.random.standard_t(1.5, size=(2, 10000))
    S[0] *= 2.

    # Mix data
    A = [[1, 1], [0, 2]] # Mixing matrix

    X = np.dot(A, S) # Generate observations

    pca = PCA()
    S_pca_ = pca.fit(X.T).transform(X.T).T

    ica = FastICA()
    S_ica_ = ica.fit(X).transform(X) # Estimate the sources

    S_ica_ /= S_ica_.std(axis=1)[:,np.newaxis]

    ###############################################################################
    # Plot results

    def plot_samples(S, axis_list=None):
        pl.scatter(S[0], S[1], s=2, marker='o', linewidths=0, zorder=10)
        if axis_list is not None:
            colors = [(0, 0.6, 0), (0.6, 0, 0)]
            for color, axis in zip(colors, axis_list):
                axis /= axis.std()
                x_axis, y_axis = axis
                # Trick to get legend to work
Пример #2
0
from scikits.learn.fastica import FastICA

###############################################################################
# Generate sample data
S = np.random.standard_t(1.5, size=(2, 10000))
S[0] *= 2.

# Mix data
A = [[1, 1], [0, 2]]  # Mixing matrix

X = np.dot(A, S)  # Generate observations

pca = PCA()
S_pca_ = pca.fit(X.T).transform(X.T).T

ica = FastICA()
S_ica_ = ica.fit(X).transform(X)  # Estimate the sources

S_ica_ /= S_ica_.std(axis=1)[:, np.newaxis]

###############################################################################
# Plot results


def plot_samples(S, axis_list=None):
    pl.scatter(S[0], S[1], s=2, marker='o', linewidths=0, zorder=10)
    if axis_list is not None:
        colors = [(0, 0.6, 0), (0.6, 0, 0)]
        for color, axis in zip(colors, axis_list):
            axis /= axis.std()
            x_axis, y_axis = axis
###############################################################################
# Generate sample data
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 10, n_samples)
s1 = np.sin(2*time) # Signal 1 : sinusoidal signal
s2 = np.sign(np.sin(3*time)) # Signal 2 : square signal
S = np.c_[s1,s2].T
S += 0.2*np.random.normal(size=S.shape) # Add noise

S /= S.std(axis=1)[:,np.newaxis] # Standardize data
# Mix data
A = [[1, 1], [0.5, 2]] # Mixing matrix
X = np.dot(A, S) # Generate observations
# Compute ICA
ica = FastICA()
S_ = ica.fit(X).transform(X) # Get the estimated sources
A_ = ica.get_mixing_matrix() # Get estimated mixing matrix

assert np.allclose(X, np.dot(A_, S_))

###############################################################################
# Plot results
pl.figure()
pl.subplot(3, 1, 1)
pl.plot(S.T)
pl.title('True Sources')
pl.subplot(3, 1, 2)
pl.plot(X.T)
pl.title('Observations (mixed signal)')
pl.subplot(3, 1, 3)
Пример #4
0
###############################################################################
# Generate sample data
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 10, n_samples)
s1 = np.sin(2 * time)  # Signal 1 : sinusoidal signal
s2 = np.sign(np.sin(3 * time))  # Signal 2 : square signal
S = np.c_[s1, s2].T
S += 0.2 * np.random.normal(size=S.shape)  # Add noise

S /= S.std(axis=1)[:, np.newaxis]  # Standardize data
# Mix data
A = [[1, 1], [0.5, 2]]  # Mixing matrix
X = np.dot(A, S)  # Generate observations
# Compute ICA
ica = FastICA()
S_ = ica.fit(X).transform(X)  # Get the estimated sources
A_ = ica.get_mixing_matrix()  # Get estimated mixing matrix

assert np.allclose(X, np.dot(A_, S_))

###############################################################################
# Plot results
pl.figure()
pl.subplot(3, 1, 1)
pl.plot(S.T)
pl.title('True Sources')
pl.subplot(3, 1, 2)
pl.plot(X.T)
pl.title('Observations (mixed signal)')
pl.subplot(3, 1, 3)