Пример #1
0
    def score(self, AB_mask):
        """
        Return the gradient of the loglike at AB_mask.

        Parameters
        ----------
        AB_mask : unknown values of A and B matrix concatenated

        Notes
        -----
        Return numerical gradient
        """
        loglike = self.loglike
        return approx_fprime(AB_mask, loglike, epsilon=1e-8)
Пример #2
0
    def score(self, AB_mask):
        """
        Return the gradient of the loglike at AB_mask.

        Parameters
        ----------
        AB_mask : unknown values of A and B matrix concatenated

        Notes
        -----
        Return numerical gradient
        """
        loglike = self.loglike
        return approx_fprime(AB_mask, loglike, epsilon=1e-8)
Пример #3
0
    def score(self, params):
        """
        Return the gradient of the loglikelihood at params.

        Parameters
        ----------
        params : array-like
            The parameter values at which to evaluate the score function.

        Notes
        -----
        Returns numerical gradient.
        """
        loglike = self.loglike
        return approx_fprime(params, loglike, epsilon=1e-8)
Пример #4
0
    def score(self, params):
        """
        Return the gradient of the loglikelihood at params.

        Parameters
        ----------
        params : array-like
            The parameter values at which to evaluate the score function.

        Notes
        -----
        Returns numerical gradient.
        """
        loglike = self.loglike
        #NOTE: always calculate at out of bounds params for estimation
        #TODO: allow for user-specified epsilon?
        return approx_fprime(params, loglike, epsilon=1e-8)
Пример #5
0
    def score(self, params):
        """
        Return the gradient of the loglikelihood at params.

        Parameters
        ----------
        params : array-like
            The parameter values at which to evaluate the score function.

        Notes
        -----
        Returns numerical gradient.
        """
        loglike = self.loglike
#NOTE: always calculate at out of bounds params for estimation
#TODO: allow for user-specified epsilon?
        return approx_fprime(params, loglike, epsilon=1e-8)