Пример #1
0
def render_scene(scene, window_size, interactor, output, silent):
    """
    Render a scene. If a output is supplied, a snapshot of the rendered
    scene is taken.
    """
    if not silent:
        showm = window.ShowManager(scene,
                                   size=window_size,
                                   reset_camera=False,
                                   interactor_style=interactor)
        showm.initialize()
        showm.start()

    if output:
        snapshot(scene, output, size=window_size)
Пример #2
0
def render_scene(scene,
                 window_size,
                 interactor,
                 output,
                 silent,
                 title='Viewer'):
    """
    Render a scene. If a output is supplied, a snapshot of the rendered
    scene is taken.

    Parameters
    ----------
    scene : window.Scene()
        3D scene to render.
    window_size : tuple (width, height)
        The dimensions for the vtk window.
    interactor : str
        Specify interactor mode for vtk window. Choices are image or trackball.
    output : str
        Path to output file.
    silent : bool
        If True, disable interactive visualization.
    title : str, optional
        Title of the scene. Defaults to Viewer.
    """
    if not silent:
        showm = window.ShowManager(scene,
                                   title=title,
                                   size=window_size,
                                   reset_camera=False,
                                   interactor_style=interactor)

        showm.initialize()
        showm.start()

    if output:
        snapshot(scene, output, size=window_size)
Пример #3
0
def display_slices(volume_actor,
                   slices,
                   output_filename,
                   axis_name,
                   view_position,
                   focal_point,
                   peaks_actor=None,
                   streamlines_actor=None):
    # Setting for the slice of interest
    if axis_name == 'sagittal':
        volume_actor.display(slices[0], None, None)
        if peaks_actor:
            peaks_actor.display(slices[0], None, None)
        view_up_vector = (0, 0, 1)
    elif axis_name == 'coronal':
        volume_actor.display(None, slices[1], None)
        if peaks_actor:
            peaks_actor.display(None, slices[1], None)
        view_up_vector = (0, 0, 1)
    else:
        volume_actor.display(None, None, slices[2])
        if peaks_actor:
            peaks_actor.display(None, None, slices[2])
        view_up_vector = (0, 1, 0)

    # Generate the scene, set the camera and take the snapshot
    scene = window.Scene()
    scene.add(volume_actor)
    if streamlines_actor:
        scene.add(streamlines_actor)
    elif peaks_actor:
        scene.add(peaks_actor)
    scene.set_camera(position=view_position,
                     view_up=view_up_vector,
                     focal_point=focal_point)

    snapshot(scene, output_filename, size=(1920, 1080), offscreen=True)
Пример #4
0
def plot_proj_shell(ms,
                    use_sym=True,
                    use_sphere=True,
                    same_color=False,
                    rad=0.025,
                    opacity=1.0,
                    ofile=None,
                    ores=(300, 300)):
    """
    Plot each shell

    Parameters
    ----------
    ms: list of numpy.ndarray
        bvecs for each bvalue
    use_sym: boolean
        Plot symmetrical vectors
    use_sphere: boolean
        rendering of the sphere
    same_color: boolean
        use same color for all shell
    rad: float
        radius of each point
    opacity: float
        opacity for the shells
    ofile: str
        output filename
    ores: tuple
        resolution of the output png

    Return
    ------
    """
    global vtkcolors
    if len(ms) > 10:
        vtkcolors = fury.colormap.distinguishable_colormap(nb_colors=len(ms))

    scene = window.Scene()
    scene.SetBackground(1, 1, 1)
    if use_sphere:
        sphere = get_sphere('symmetric724')
        shape = (1, 1, 1, sphere.vertices.shape[0])
        fid, fname = mkstemp(suffix='_odf_slicer.mmap')
        odfs = np.memmap(fname, dtype=np.float64, mode='w+', shape=shape)
        odfs[:] = 1
        odfs[..., 0] = 1
        affine = np.eye(4)
        sphere_actor = actor.odf_slicer(odfs,
                                        affine,
                                        sphere=sphere,
                                        colormap='winter',
                                        scale=1.0,
                                        opacity=opacity)

        scene.add(sphere_actor)

    for i, shell in enumerate(ms):
        if same_color:
            i = 0
        pts_actor = actor.point(shell, vtkcolors[i], point_radius=rad)
        scene.add(pts_actor)
        if use_sym:
            pts_actor = actor.point(-shell, vtkcolors[i], point_radius=rad)
            scene.add(pts_actor)
    window.show(scene)
    if ofile:
        filename = ofile + '.png'
        snapshot(scene, filename, size=ores)
Пример #5
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    # The number of labels maps must be equal to the number of bundles
    tmp = args.in_bundles + args.in_labels
    args.in_labels = args.in_bundles[(len(tmp) // 2):] + args.in_labels
    args.in_bundles = args.in_bundles[0:len(tmp) // 2]
    assert_inputs_exist(parser, args.in_bundles + args.in_labels)
    assert_output_dirs_exist_and_empty(parser,
                                       args, [],
                                       optional=args.save_rendering)

    stats = {}
    num_digits_labels = 3
    scene = window.Scene()
    scene.background(tuple(map(int, args.background)))
    for i, filename in enumerate(args.in_bundles):
        sft = load_tractogram_with_reference(parser, args, filename)
        sft.to_vox()
        sft.to_corner()
        img_labels = nib.load(args.in_labels[i])

        # same subject: same header or coregistered subjects: same header
        if not is_header_compatible(sft, args.in_bundles[0]) \
                or not is_header_compatible(img_labels, args.in_bundles[0]):
            parser.error('All headers must be identical.')

        data_labels = img_labels.get_fdata()
        bundle_name, _ = os.path.splitext(os.path.basename(filename))
        unique_labels = np.unique(data_labels)[1:].astype(int)

        # Empty bundle should at least return a json
        if not len(sft):
            tmp_dict = {}
            for label in unique_labels:
                tmp_dict['{}'.format(label).zfill(num_digits_labels)] \
                    = {'mean': 0.0, 'std': 0.0}
            stats[bundle_name] = {'diameter': tmp_dict}
            continue

        counter = 0
        labels_dict = {label: ([], []) for label in unique_labels}
        pts_labels = map_coordinates(data_labels,
                                     sft.streamlines._data.T - 0.5,
                                     order=0)
        # For each label, all positions and directions are needed to get
        # a tube estimation per label.
        for streamline in sft.streamlines:
            direction = np.gradient(streamline, axis=0).tolist()
            curr_labels = pts_labels[counter:counter +
                                     len(streamline)].tolist()

            for i, label in enumerate(curr_labels):
                if label > 0:
                    labels_dict[label][0].append(streamline[i])
                    labels_dict[label][1].append(direction[i])

            counter += len(streamline)

        centroid = np.zeros((len(unique_labels), 3))
        radius = np.zeros((len(unique_labels), 1))
        error = np.zeros((len(unique_labels), 1))
        for key in unique_labels:
            key = int(key)
            c, d, e = fit_circle_in_space(labels_dict[key][0],
                                          labels_dict[key][1],
                                          args.fitting_func)
            centroid[key - 1], radius[key - 1], error[key - 1] = c, d, e

        # Spatial smoothing to avoid degenerate estimation
        centroid_smooth = gaussian_filter(centroid,
                                          sigma=[1, 0],
                                          mode='nearest')
        centroid_smooth[::len(centroid) - 1] = centroid[::len(centroid) - 1]
        radius = gaussian_filter(radius, sigma=1, mode='nearest')
        error = gaussian_filter(error, sigma=1, mode='nearest')

        tmp_dict = {}
        for label in unique_labels:
            tmp_dict['{}'.format(label).zfill(num_digits_labels)] \
                = {'mean': float(radius[label-1])*2,
                   'std': float(error[label-1])}
        stats[bundle_name] = {'diameter': tmp_dict}

        if args.show_rendering or args.save_rendering:
            tube_actor = create_tube_with_radii(
                centroid_smooth,
                radius,
                error,
                wireframe=args.wireframe,
                error_coloring=args.error_coloring)
            scene.add(tube_actor)
            cmap = plt.get_cmap('jet')
            coloring = cmap(pts_labels / np.max(pts_labels))[:, 0:3]
            streamlines_actor = actor.streamtube(sft.streamlines,
                                                 linewidth=args.width,
                                                 opacity=args.opacity,
                                                 colors=coloring)
            scene.add(streamlines_actor)

            slice_actor = actor.slicer(data_labels, np.eye(4))
            slice_actor.opacity(0.0)
            scene.add(slice_actor)

    # If there's actually streamlines to display
    if args.show_rendering:
        showm = window.ShowManager(scene, reset_camera=True)
        showm.initialize()
        showm.start()
    elif args.save_rendering:
        scene.reset_camera()
        snapshot(scene,
                 os.path.join(args.save_rendering, 'superior.png'),
                 size=(1920, 1080),
                 offscreen=True)

        scene.pitch(180)
        scene.reset_camera()
        snapshot(scene,
                 os.path.join(args.save_rendering, 'inferior.png'),
                 size=(1920, 1080),
                 offscreen=True)

        scene.pitch(90)
        scene.set_camera(view_up=(0, 0, 1))
        scene.reset_camera()
        snapshot(scene,
                 os.path.join(args.save_rendering, 'posterior.png'),
                 size=(1920, 1080),
                 offscreen=True)

        scene.pitch(180)
        scene.set_camera(view_up=(0, 0, 1))
        scene.reset_camera()
        snapshot(scene,
                 os.path.join(args.save_rendering, 'anterior.png'),
                 size=(1920, 1080),
                 offscreen=True)

        scene.yaw(90)
        scene.reset_camera()
        snapshot(scene,
                 os.path.join(args.save_rendering, 'right.png'),
                 size=(1920, 1080),
                 offscreen=True)

        scene.yaw(180)
        scene.reset_camera()
        snapshot(scene,
                 os.path.join(args.save_rendering, 'left.png'),
                 size=(1920, 1080),
                 offscreen=True)
    print(json.dumps(stats, indent=args.indent, sort_keys=args.sort_keys))