Пример #1
0
def test_sin():
    var = sc.Variable([Dim.X],
                      values=np.array([0.0, math.pi]),
                      unit=sc.units.rad)
    expected = sc.Variable([Dim.X],
                           values=np.array([math.sin(0.0),
                                            math.sin(math.pi)]),
                           unit=sc.units.dimensionless)
    assert sc.sin(var) == expected
Пример #2
0
def reflectometry_q(wavelength: sc.Variable, theta: sc.Variable) -> sc.Variable:
    """
    Compute the Q vector from the theta angle computed as the difference
    between gamma and omega.
    Note that this is identical the 'normal' Q defined in scippneutron, except that
    the `theta` angle is given as an input instead of `two_theta`.
    """
    dtype = _elem_dtype(wavelength)
    c = (4 * pi).astype(dtype)
    return c * sc.sin(theta.astype(dtype, copy=False)) / wavelength
Пример #3
0
def test_sin_out():
    var = sc.Variable([Dim.X],
                      values=np.array([0.0, math.pi]),
                      unit=sc.units.rad)
    expected = sc.Variable([Dim.X],
                           values=np.array([math.sin(0.0),
                                            math.sin(math.pi)]),
                           unit=sc.units.dimensionless)
    out = sc.sin(x=var, out=var)
    assert var == expected
    assert out == expected
Пример #4
0
def illumination_correction(beam_size: sc.Variable, sample_size: sc.Variable,
                            theta: sc.Variable) -> sc.Variable:
    """
    Compute the factor by which the intensity should be multiplied to account for the
    scattering geometry, where the beam is Gaussian in shape.

    :param beam_size: Width of incident beam.
    :param sample_size: Width of sample in the dimension of the beam.
    :param theta: Incident angle.
    """
    beam_on_sample = beam_size / sc.sin(theta)
    fwhm_to_std = 2 * np.sqrt(2 * np.log(2))
    return sc.erf(sample_size / beam_on_sample * fwhm_to_std)
Пример #5
0
def illumination_of_sample(beam_size: sc.Variable, sample_size: sc.Variable,
                           theta: sc.Variable) -> sc.Variable:
    """
    Determine the illumination of the sample by the beam and therefore the size of its
    illuminated length.

    :param beam_size: Width of incident beam.
    :param sample_size: Width of sample in the dimension of the beam.
    :param theta: Incident angle.
    """
    beam_on_sample = beam_size / sc.sin(theta)
    if ((sc.mean(beam_on_sample)) > sample_size).value:
        beam_on_sample = sc.broadcast(sample_size,
                                      shape=theta.shape,
                                      dims=theta.dims)
    return beam_on_sample
Пример #6
0
def get_detector_properties(ws,
                            source_pos,
                            sample_pos,
                            spectrum_dim,
                            advanced_geometry=False):
    if not advanced_geometry:
        return (get_detector_pos(ws, spectrum_dim), None, None)
    spec_info = ws.spectrumInfo()
    det_info = ws.detectorInfo()
    comp_info = ws.componentInfo()
    nspec = len(spec_info)
    det_rot = np.zeros([nspec, 3, 3])
    det_bbox = np.zeros([nspec, 3])

    if sample_pos is not None and source_pos is not None:
        total_detectors = spec_info.detectorCount()
        act_beam = (sample_pos - source_pos)
        rot = _rot_from_vectors(act_beam, sc.vector(value=[0, 0, 1]))
        inv_rot = _rot_from_vectors(sc.vector(value=[0, 0, 1]), act_beam)

        pos_d = sc.Dataset()
        # Create empty to hold position info for all spectra detectors
        pos_d["x"] = sc.zeros(dims=["detector"],
                              shape=[total_detectors],
                              unit=sc.units.m)
        pos_d["y"] = sc.zeros_like(pos_d["x"])
        pos_d["z"] = sc.zeros_like(pos_d["x"])
        pos_d.coords[spectrum_dim] = sc.array(dims=["detector"],
                                              values=np.empty(total_detectors))

        spectrum_values = pos_d.coords[spectrum_dim].values

        x_values = pos_d["x"].values
        y_values = pos_d["y"].values
        z_values = pos_d["z"].values

        idx = 0
        for i, spec in enumerate(spec_info):
            if spec.hasDetectors:
                definition = spec_info.getSpectrumDefinition(i)
                n_dets = len(definition)
                quats = []
                bboxes = []
                for j in range(n_dets):
                    det_idx = definition[j][0]
                    p = det_info.position(det_idx)
                    r = det_info.rotation(det_idx)
                    spectrum_values[idx] = i
                    x_values[idx] = p.X()
                    y_values[idx] = p.Y()
                    z_values[idx] = p.Z()
                    idx += 1
                    quats.append(
                        np.array([r.imagI(),
                                  r.imagJ(),
                                  r.imagK(),
                                  r.real()]))
                    if comp_info.hasValidShape(det_idx):
                        s = comp_info.shape(det_idx)
                        bboxes.append(s.getBoundingBox().width())
                det_rot[
                    i, :] = sc.geometry.rotation_matrix_from_quaternion_coeffs(
                        np.mean(quats, axis=0))
                det_bbox[i, :] = np.sum(bboxes, axis=0)

        rot_pos = rot * sc.geometry.position(pos_d["x"].data, pos_d["y"].data,
                                             pos_d["z"].data)

        _to_spherical(rot_pos, pos_d)

        averaged = sc.groupby(pos_d,
                              spectrum_dim,
                              bins=sc.Variable(dims=[spectrum_dim],
                                               values=np.arange(
                                                   -0.5,
                                                   len(spec_info) + 0.5,
                                                   1.0))).mean("detector")

        sign = averaged["p-sign"].data / sc.abs(averaged["p-sign"].data)
        averaged["p"] = sign * (
            (np.pi * sc.units.rad) - averaged["p-delta"].data)
        averaged["x"] = averaged["r"].data * sc.sin(
            averaged["t"].data) * sc.cos(averaged["p"].data)
        averaged["y"] = averaged["r"].data * sc.sin(
            averaged["t"].data) * sc.sin(averaged["p"].data)
        averaged["z"] = averaged["r"].data * sc.cos(averaged["t"].data)

        pos = sc.geometry.position(averaged["x"].data, averaged["y"].data,
                                   averaged["z"].data)

        return (inv_rot * pos,
                sc.spatial.linear_transforms(dims=[spectrum_dim],
                                             values=det_rot),
                sc.vectors(dims=[spectrum_dim],
                           values=det_bbox,
                           unit=sc.units.m))
    else:
        pos = np.zeros([nspec, 3])

        for i, spec in enumerate(spec_info):
            if spec.hasDetectors:
                definition = spec_info.getSpectrumDefinition(i)
                n_dets = len(definition)
                vec3s = []
                quats = []
                bboxes = []
                for j in range(n_dets):
                    det_idx = definition[j][0]
                    p = det_info.position(det_idx)
                    r = det_info.rotation(det_idx)
                    vec3s.append([p.X(), p.Y(), p.Z()])
                    quats.append(
                        np.array([r.imagI(),
                                  r.imagJ(),
                                  r.imagK(),
                                  r.real()]))
                    if comp_info.hasValidShape(det_idx):
                        s = comp_info.shape(det_idx)
                        bboxes.append(s.getBoundingBox().width())
                pos[i, :] = np.mean(vec3s, axis=0)
                det_rot[
                    i, :] = sc.geometry.rotation_matrix_from_quaternion_coeffs(
                        np.mean(quats, axis=0))
                det_bbox[i, :] = np.sum(bboxes, axis=0)
            else:
                pos[i, :] = [np.nan, np.nan, np.nan]
                det_rot[i, :] = [np.nan, np.nan, np.nan, np.nan]
                det_bbox[i, :] = [np.nan, np.nan, np.nan]
        return (sc.vectors(dims=[spectrum_dim], values=pos, unit=sc.units.m),
                sc.spatial.linear_transforms(dims=[spectrum_dim],
                                             values=det_rot),
                sc.vectors(
                    dims=[spectrum_dim],
                    values=det_bbox,
                    unit=sc.units.m,
                ))