Пример #1
0
def bicg(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M=None, callback=None):
    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec, rmatvec = A.matvec, A.rmatvec
    psolve, rpsolve = M.matvec, M.rmatvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'bicgrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(6*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 4):
            work[slice1] = rpsolve(work[slice2])
        elif (ijob == 5):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 6):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #2
0
def bicgstab(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'bicgstabrevcom')

    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicgstab')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(7*n,dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #3
0
 def check(shape, dtype, order, align):
     err_msg = repr((shape, dtype, order, align))
     x = _aligned_zeros(shape, dtype, order, align=align)
     if align is None:
         align = np.dtype(dtype).alignment
     assert_equal(x.__array_interface__['data'][0] % align, 0)
     if hasattr(shape, '__len__'):
         assert_equal(x.shape, shape, err_msg)
     else:
         assert_equal(x.shape, (shape,), err_msg)
     assert_equal(x.dtype, dtype)
     if order == "C":
         assert_(x.flags.c_contiguous, err_msg)
     elif order == "F":
         if x.size > 0:
             # Size-0 arrays get invalid flags on Numpy 1.5
             assert_(x.flags.f_contiguous, err_msg)
     elif order is None:
         assert_(x.flags.c_contiguous, err_msg)
     else:
         raise ValueError()
Пример #4
0
 def check(shape, dtype, order, align):
     err_msg = repr((shape, dtype, order, align))
     x = _aligned_zeros(shape, dtype, order, align=align)
     if align is None:
         align = np.dtype(dtype).alignment
     assert_equal(x.__array_interface__['data'][0] % align, 0)
     if hasattr(shape, '__len__'):
         assert_equal(x.shape, shape, err_msg)
     else:
         assert_equal(x.shape, (shape, ), err_msg)
     assert_equal(x.dtype, dtype)
     if order == "C":
         assert_(x.flags.c_contiguous, err_msg)
     elif order == "F":
         if x.size > 0:
             # Size-0 arrays get invalid flags on Numpy 1.5
             assert_(x.flags.f_contiguous, err_msg)
     elif order is None:
         assert_(x.flags.c_contiguous, err_msg)
     else:
         raise ValueError()
Пример #5
0
def gmres(A,
          b,
          x0=None,
          tol=1e-5,
          restart=None,
          maxiter=None,
          M=None,
          callback=None,
          restrt=None,
          atol=None,
          callback_type=None):
    """
    Use Generalized Minimal RESidual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : int
        Provides convergence information:
          * 0  : successful exit
          * >0 : convergence to tolerance not achieved, number of iterations
          * <0 : illegal input or breakdown

    Other parameters
    ----------------
    x0 : {array, matrix}
        Starting guess for the solution (a vector of zeros by default).
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    restart : int, optional
        Number of iterations between restarts. Larger values increase
        iteration cost, but may be necessary for convergence.
        Default is 20.
    maxiter : int, optional
        Maximum number of iterations (restart cycles).  Iteration will stop
        after maxiter steps even if the specified tolerance has not been
        achieved.
    M : {sparse matrix, dense matrix, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as `callback(args)`, where `args` are selected by `callback_type`.
    callback_type : {'x', 'pr_norm', 'legacy'}, optional
        Callback function argument requested:
          - ``x``: current iterate (ndarray), called on every restart
          - ``pr_norm``: relative (preconditioned) residual norm (float),
            called on every inner iteration
          - ``legacy`` (default): same as ``pr_norm``, but also changes the
            meaning of 'maxiter' to count inner iterations instead of restart
            cycles.
    restrt : int, optional
        DEPRECATED - use `restart` instead.

    See Also
    --------
    LinearOperator

    Notes
    -----
    A preconditioner, P, is chosen such that P is close to A but easy to solve
    for. The preconditioner parameter required by this routine is
    ``M = P^-1``. The inverse should preferably not be calculated
    explicitly.  Rather, use the following template to produce M::

      # Construct a linear operator that computes P^-1 * x.
      import scipy.sparse.linalg as spla
      M_x = lambda x: spla.spsolve(P, x)
      M = spla.LinearOperator((n, n), M_x)

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import gmres
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = gmres(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """

    # Change 'restrt' keyword to 'restart'
    if restrt is None:
        restrt = restart
    elif restart is not None:
        raise ValueError("Cannot specify both restart and restrt keywords. "
                         "Preferably use 'restart' only.")

    if callback is not None and callback_type is None:
        # Warn about 'callback_type' semantic changes.
        # Probably should be removed only in far future, Scipy 2.0 or so.
        warnings.warn(
            "scipy.sparse.linalg.gmres called without specifying `callback_type`. "
            "The default value will be changed in a future release. "
            "For compatibility, specify a value for `callback_type` explicitly, e.g., "
            "``{name}(..., callback_type='pr_norm')``, or to retain the old behavior "
            "``{name}(..., callback_type='legacy')``",
            category=DeprecationWarning,
            stacklevel=3)

    if callback_type is None:
        callback_type = 'legacy'

    if callback_type not in ('x', 'pr_norm', 'legacy'):
        raise ValueError("Unknown callback_type: {!r}".format(callback_type))

    if callback is None:
        callback_type = 'none'

    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n * 10

    if restrt is None:
        restrt = 20
    restrt = min(restrt, n)

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'gmresrevcom')

    bnrm2 = np.linalg.norm(b)
    Mb_nrm2 = np.linalg.norm(psolve(b))
    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, bnrm2, get_residual, 'gmres')
    if atol == 'exit':
        return postprocess(x), 0

    if bnrm2 == 0:
        return postprocess(b), 0

    # Tolerance passed to GMRESREVCOM applies to the inner iteration
    # and deals with the left-preconditioned residual.
    ptol_max_factor = 1.0
    ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2)
    resid = np.nan
    presid = np.nan
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros((6 + restrt) * n, dtype=x.dtype)
    work2 = _aligned_zeros((restrt + 1) * (2 * restrt + 2), dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    old_ijob = ijob
    first_pass = True
    resid_ready = False
    iter_num = 1
    while True:
        olditer = iter_
        x, iter_, presid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, restrt, work, work2, iter_, presid, info, ndx1, ndx2, ijob, ptol)
        if callback_type == 'x' and iter_ != olditer:
            callback(x)
        slice1 = slice(ndx1 - 1, ndx1 - 1 + n)
        slice2 = slice(ndx2 - 1, ndx2 - 1 + n)
        if (ijob == -1):  # gmres success, update last residual
            if callback_type in ('pr_norm', 'legacy'):
                if resid_ready:
                    callback(presid / bnrm2)
            elif callback_type == 'x':
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(x)
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
            if not first_pass and old_ijob == 3:
                resid_ready = True

            first_pass = False
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(work[slice1])
            if resid_ready:
                if callback_type in ('pr_norm', 'legacy'):
                    callback(presid / bnrm2)
                resid_ready = False
                iter_num = iter_num + 1

        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)

            # Inner loop tolerance control
            if info or presid > ptol:
                ptol_max_factor = min(1.0, 1.5 * ptol_max_factor)
            else:
                # Inner loop tolerance OK, but outer loop not.
                ptol_max_factor = max(1e-16, 0.25 * ptol_max_factor)

            if resid != 0:
                ptol = presid * min(ptol_max_factor, atol / resid)
            else:
                ptol = presid * ptol_max_factor

        old_ijob = ijob
        ijob = 2

        if callback_type == 'legacy':
            # Legacy behavior
            if iter_num > maxiter:
                info = maxiter
                break

    if info >= 0 and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = maxiter

    return postprocess(x), info
Пример #6
0
def cgs(A,
        b,
        x0=None,
        tol=1e-5,
        maxiter=None,
        M=None,
        callback=None,
        atol=None):
    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n * 10

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'cgsrevcom')

    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cgs')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(7 * n, dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1 - 1, ndx1 - 1 + n)
        slice2 = slice(ndx2 - 1, ndx2 - 1 + n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(work[slice1])
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(x)
        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
            if info == 1 and iter_ > 1:
                # recompute residual and recheck, to avoid
                # accumulating rounding error
                work[slice1] = b - matvec(x)
                resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info == -10:
        # termination due to breakdown: check for convergence
        resid, ok = _stoptest(b - matvec(x), atol)
        if ok:
            info = 0

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #7
0
def bicg(A,
         b,
         x0=None,
         tol=1e-5,
         maxiter=None,
         M=None,
         callback=None,
         atol=None):
    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n * 10

    matvec, rmatvec = A.matvec, A.rmatvec
    psolve, rpsolve = M.matvec, M.rmatvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'bicgrevcom')

    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicg')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(6 * n, dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1 - 1, ndx1 - 1 + n)
        slice2 = slice(ndx2 - 1, ndx2 - 1 + n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 4):
            work[slice1] = rpsolve(work[slice2])
        elif (ijob == 5):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(x)
        elif (ijob == 6):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #8
0
def qmr(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M1=None, M2=None, callback=None):
    """Use Quasi-Minimal Residual iteration to solve A x = b

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real-valued N-by-N matrix of the linear system.
        It is required that the linear operator can produce
        ``Ax`` and ``A^T x``.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    Other Parameters
    ----------------
    x0  : {array, matrix}
        Starting guess for the solution.
    tol : float
        Tolerance to achieve. The algorithm terminates when either the relative
        or the absolute residual is below `tol`.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M1 : {sparse matrix, dense matrix, LinearOperator}
        Left preconditioner for A.
    M2 : {sparse matrix, dense matrix, LinearOperator}
        Right preconditioner for A. Used together with the left
        preconditioner M1.  The matrix M1*A*M2 should have better
        conditioned than A alone.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.
    xtype : {'f','d','F','D'}
        This parameter is DEPRECATED -- avoid using it.

        The type of the result.  If None, then it will be determined from
        A.dtype.char and b.  If A does not have a typecode method then it
        will compute A.matvec(x0) to get a typecode.   To save the extra
        computation when A does not have a typecode attribute use xtype=0
        for the same type as b or use xtype='f','d','F',or 'D'.
        This parameter has been superseded by LinearOperator.

    See Also
    --------
    LinearOperator

    """
    A_ = A
    A,M,x,b,postprocess = make_system(A,None,x0,b,xtype)

    if M1 is None and M2 is None:
        if hasattr(A_,'psolve'):
            def left_psolve(b):
                return A_.psolve(b,'left')

            def right_psolve(b):
                return A_.psolve(b,'right')

            def left_rpsolve(b):
                return A_.rpsolve(b,'left')

            def right_rpsolve(b):
                return A_.rpsolve(b,'right')
            M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve)
            M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve)
        else:
            def id(b):
                return b
            M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
            M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'qmrrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(11*n,x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = M1.matvec(work[slice2])
        elif (ijob == 4):
            work[slice1] = M2.matvec(work[slice2])
        elif (ijob == 5):
            work[slice1] = M1.rmatvec(work[slice2])
        elif (ijob == 6):
            work[slice1] = M2.rmatvec(work[slice2])
        elif (ijob == 7):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(x)
        elif (ijob == 8):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #9
0
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, xtype=None, M=None, callback=None, restrt=None):
    """
    Use Generalized Minimal RESidual iteration to solve A x = b.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : int
        Provides convergence information:
          * 0  : successful exit
          * >0 : convergence to tolerance not achieved, number of iterations
          * <0 : illegal input or breakdown

    Other parameters
    ----------------
    x0 : {array, matrix}
        Starting guess for the solution (a vector of zeros by default).
    tol : float
        Tolerance to achieve. The algorithm terminates when either the relative
        or the absolute residual is below `tol`.
    restart : int, optional
        Number of iterations between restarts. Larger values increase
        iteration cost, but may be necessary for convergence.
        Default is 20.
    maxiter : int, optional
        Maximum number of iterations (restart cycles).  Iteration will stop
        after maxiter steps even if the specified tolerance has not been
        achieved.
    xtype : {'f','d','F','D'}
        This parameter is DEPRECATED --- avoid using it.

        The type of the result.  If None, then it will be determined from
        A.dtype.char and b.  If A does not have a typecode method then it
        will compute A.matvec(x0) to get a typecode.   To save the extra
        computation when A does not have a typecode attribute use xtype=0
        for the same type as b or use xtype='f','d','F',or 'D'.
        This parameter has been superseded by LinearOperator.
    M : {sparse matrix, dense matrix, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(rk), where rk is the current residual vector.
    restrt : int, optional
        DEPRECATED - use `restart` instead.

    See Also
    --------
    LinearOperator

    Notes
    -----
    A preconditioner, P, is chosen such that P is close to A but easy to solve
    for. The preconditioner parameter required by this routine is
    ``M = P^-1``. The inverse should preferably not be calculated
    explicitly.  Rather, use the following template to produce M::

      # Construct a linear operator that computes P^-1 * x.
      import scipy.sparse.linalg as spla
      M_x = lambda x: spla.spsolve(P, x)
      M = spla.LinearOperator((n, n), M_x)

    """

    # Change 'restrt' keyword to 'restart'
    if restrt is None:
        restrt = restart
    elif restart is not None:
        raise ValueError("Cannot specify both restart and restrt keywords. "
                         "Preferably use 'restart' only.")

    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    if restrt is None:
        restrt = 20
    restrt = min(restrt, n)

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'gmresrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros((6+restrt)*n,dtype=x.dtype)
    work2 = _aligned_zeros((restrt+1)*(2*restrt+2),dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    old_ijob = ijob
    first_pass = True
    resid_ready = False
    iter_num = 1
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, restrt, work, work2, iter_, resid, info, ndx1, ndx2, ijob)
        # if callback is not None and iter_ > olditer:
        #    callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):  # gmres success, update last residual
            if resid_ready and callback is not None:
                callback(resid)
                resid_ready = False

            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
            if not first_pass and old_ijob == 3:
                resid_ready = True

            first_pass = False
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
            if resid_ready and callback is not None:
                callback(resid)
                resid_ready = False
                iter_num = iter_num+1

        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)

        old_ijob = ijob
        ijob = 2

        if iter_num > maxiter:
            break

    if info >= 0 and resid > tol:
        # info isn't set appropriately otherwise
        info = maxiter

    return postprocess(x), info
Пример #10
0
  def __init__(self,
               n,
               k,
               tp,
               matvec,
               mode=1,
               M_matvec=None,
               Minv_matvec=None,
               sigma=None,
               ncv=None,
               v0=None,
               maxiter=None,
               which="LM",
               tol=0):
    # The following modes are supported:
    #  mode = 1:
    #    Solve the standard eigenvalue problem:
    #      A*x = lambda*x :
    #       A - symmetric
    #    Arguments should be
    #       matvec      = left multiplication by A
    #       M_matvec    = None [not used]
    #       Minv_matvec = None [not used]
    #
    #  mode = 2:
    #    Solve the general eigenvalue problem:
    #      A*x = lambda*M*x
    #       A - symmetric
    #       M - symmetric positive definite
    #    Arguments should be
    #       matvec      = left multiplication by A
    #       M_matvec    = left multiplication by M
    #       Minv_matvec = left multiplication by M^-1
    #
    #  mode = 3:
    #    Solve the general eigenvalue problem in shift-invert mode:
    #      A*x = lambda*M*x
    #       A - symmetric
    #       M - symmetric positive semi-definite
    #    Arguments should be
    #       matvec      = None [not used]
    #       M_matvec    = left multiplication by M
    #                     or None, if M is the identity
    #       Minv_matvec = left multiplication by [A-sigma*M]^-1
    #
    #  mode = 4:
    #    Solve the general eigenvalue problem in Buckling mode:
    #      A*x = lambda*AG*x
    #       A  - symmetric positive semi-definite
    #       AG - symmetric indefinite
    #    Arguments should be
    #       matvec      = left multiplication by A
    #       M_matvec    = None [not used]
    #       Minv_matvec = left multiplication by [A-sigma*AG]^-1
    #
    #  mode = 5:
    #    Solve the general eigenvalue problem in Cayley-transformed mode:
    #      A*x = lambda*M*x
    #       A - symmetric
    #       M - symmetric positive semi-definite
    #    Arguments should be
    #       matvec      = left multiplication by A
    #       M_matvec    = left multiplication by M
    #                     or None, if M is the identity
    #       Minv_matvec = left multiplication by [A-sigma*M]^-1
    if mode == 1:
      if matvec is None:
        raise ValueError("matvec must be specified for mode=1")
      if M_matvec is not None:
        raise ValueError("M_matvec cannot be specified for mode=1")
      if Minv_matvec is not None:
        raise ValueError("Minv_matvec cannot be specified for mode=1")

      self.OP = matvec
      self.B = lambda x: x
      self.bmat = "I"
    elif mode == 2:
      if matvec is None:
        raise ValueError("matvec must be specified for mode=2")
      if M_matvec is None:
        raise ValueError("M_matvec must be specified for mode=2")
      if Minv_matvec is None:
        raise ValueError("Minv_matvec must be specified for mode=2")

      self.OP = lambda x: Minv_matvec(matvec(x))
      self.OPa = Minv_matvec
      self.OPb = matvec
      self.B = M_matvec
      self.bmat = "G"
    elif mode == 3:
      if matvec is not None:
        raise ValueError("matvec must not be specified for mode=3")
      if Minv_matvec is None:
        raise ValueError("Minv_matvec must be specified for mode=3")

      if M_matvec is None:
        self.OP = Minv_matvec
        self.OPa = Minv_matvec
        self.B = lambda x: x
        self.bmat = "I"
      else:
        self.OP = lambda x: Minv_matvec(M_matvec(x))
        self.OPa = Minv_matvec
        self.B = M_matvec
        self.bmat = "G"
    elif mode == 4:
      if matvec is None:
        raise ValueError("matvec must be specified for mode=4")
      if M_matvec is not None:
        raise ValueError("M_matvec must not be specified for mode=4")
      if Minv_matvec is None:
        raise ValueError("Minv_matvec must be specified for mode=4")
      self.OPa = Minv_matvec
      self.OP = lambda x: self.OPa(matvec(x))
      self.B = matvec
      self.bmat = "G"
    elif mode == 5:
      if matvec is None:
        raise ValueError("matvec must be specified for mode=5")
      if Minv_matvec is None:
        raise ValueError("Minv_matvec must be specified for mode=5")

      self.OPa = Minv_matvec
      self.A_matvec = matvec

      if M_matvec is None:
        self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x)
        self.B = lambda x: x
        self.bmat = "I"
      else:
        self.OP = lambda x: Minv_matvec(matvec(x) + sigma * M_matvec(x))
        self.B = M_matvec
        self.bmat = "G"
    else:
      raise ValueError("mode=%i not implemented" % mode)

    if which not in _SEUPD_WHICH:
      raise ValueError("which must be one of %s" % " ".join(_SEUPD_WHICH))
    if k >= n:
      raise ValueError("k must be less than ndim(A), k=%d" % k)

    _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which,
                           tol)

    if self.ncv > n or self.ncv <= k:
      raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv)

    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    self.workd = _aligned_zeros(3 * n, self.tp)
    self.workl = _aligned_zeros(self.ncv * (self.ncv + 8), self.tp)

    ltr = _type_conv[self.tp]
    if ltr not in ["s", "d"]:
      raise ValueError("Input matrix is not real-valued.")

    self._arpack_solver = _arpack.__dict__[ltr + "saupd"]
    self._arpack_extract = _arpack.__dict__[ltr + "seupd"]

    self.iterate_infodict = _SAUPD_ERRORS[ltr]
    self.extract_infodict = _SEUPD_ERRORS[ltr]

    self.ipntr = np.zeros(11, "int")
Пример #11
0
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, M=None, callback=None,
          restrt=None, atol=None):
    """
    Use Generalized Minimal RESidual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : int
        Provides convergence information:
          * 0  : successful exit
          * >0 : convergence to tolerance not achieved, number of iterations
          * <0 : illegal input or breakdown

    Other parameters
    ----------------
    x0 : {array, matrix}
        Starting guess for the solution (a vector of zeros by default).
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    restart : int, optional
        Number of iterations between restarts. Larger values increase
        iteration cost, but may be necessary for convergence.
        Default is 20.
    maxiter : int, optional
        Maximum number of iterations (restart cycles).  Iteration will stop
        after maxiter steps even if the specified tolerance has not been
        achieved.
    M : {sparse matrix, dense matrix, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(rk), where rk is the current residual vector.
    restrt : int, optional
        DEPRECATED - use `restart` instead.

    See Also
    --------
    LinearOperator

    Notes
    -----
    A preconditioner, P, is chosen such that P is close to A but easy to solve
    for. The preconditioner parameter required by this routine is
    ``M = P^-1``. The inverse should preferably not be calculated
    explicitly.  Rather, use the following template to produce M::

      # Construct a linear operator that computes P^-1 * x.
      import scipy.sparse.linalg as spla
      M_x = lambda x: spla.spsolve(P, x)
      M = spla.LinearOperator((n, n), M_x)

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import gmres
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = gmres(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """

    # Change 'restrt' keyword to 'restart'
    if restrt is None:
        restrt = restart
    elif restart is not None:
        raise ValueError("Cannot specify both restart and restrt keywords. "
                         "Preferably use 'restart' only.")

    A, M, x, b,postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    if restrt is None:
        restrt = 20
    restrt = min(restrt, n)

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'gmresrevcom')

    bnrm2 = np.linalg.norm(b)
    Mb_nrm2 = np.linalg.norm(psolve(b))
    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = _get_atol(tol, atol, bnrm2, get_residual, 'gmres')
    if atol == 'exit':
        return postprocess(x), 0

    if bnrm2 == 0:
        return postprocess(b), 0

    # Tolerance passed to GMRESREVCOM applies to the inner iteration
    # and deals with the left-preconditioned residual.
    ptol_max_factor = 1.0
    ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2)
    resid = np.nan
    presid = np.nan
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros((6+restrt)*n,dtype=x.dtype)
    work2 = _aligned_zeros((restrt+1)*(2*restrt+2),dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    old_ijob = ijob
    first_pass = True
    resid_ready = False
    iter_num = 1
    while True:
        x, iter_, presid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, restrt, work, work2, iter_, presid, info, ndx1, ndx2, ijob, ptol)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):  # gmres success, update last residual
            if resid_ready and callback is not None:
                callback(presid / bnrm2)
                resid_ready = False
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
            if not first_pass and old_ijob == 3:
                resid_ready = True

            first_pass = False
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
            if resid_ready and callback is not None:
                callback(presid / bnrm2)
                resid_ready = False
                iter_num = iter_num+1

        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)

            # Inner loop tolerance control
            if info or presid > ptol:
                ptol_max_factor = min(1.0, 1.5 * ptol_max_factor)
            else:
                # Inner loop tolerance OK, but outer loop not.
                ptol_max_factor = max(1e-16, 0.25 * ptol_max_factor)

            if resid != 0:
                ptol = presid * min(ptol_max_factor, atol / resid)
            else:
                ptol = presid * ptol_max_factor

        old_ijob = ijob
        ijob = 2

        if iter_num > maxiter:
            info = maxiter
            break

    if info >= 0 and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = maxiter
        
    return postprocess(x), info
Пример #12
0
def qmr(A, b, x0=None, tol=1e-5, maxiter=None, xtype=None, M1=None, M2=None, callback=None):
    """Use Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real-valued N-by-N matrix of the linear system.
        It is required that the linear operator can produce
        ``Ax`` and ``A^T x``.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    Other Parameters
    ----------------
    x0  : {array, matrix}
        Starting guess for the solution.
    tol : float
        Tolerance to achieve. The algorithm terminates when either the relative
        or the absolute residual is below `tol`.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M1 : {sparse matrix, dense matrix, LinearOperator}
        Left preconditioner for A.
    M2 : {sparse matrix, dense matrix, LinearOperator}
        Right preconditioner for A. Used together with the left
        preconditioner M1.  The matrix M1*A*M2 should have better
        conditioned than A alone.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.
    xtype : {'f','d','F','D'}
        This parameter is DEPRECATED -- avoid using it.

        The type of the result.  If None, then it will be determined from
        A.dtype.char and b.  If A does not have a typecode method then it
        will compute A.matvec(x0) to get a typecode.   To save the extra
        computation when A does not have a typecode attribute use xtype=0
        for the same type as b or use xtype='f','d','F',or 'D'.
        This parameter has been superseded by LinearOperator.

    See Also
    --------
    LinearOperator

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import qmr
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = qmr(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """
    A_ = A
    A,M,x,b,postprocess = make_system(A,None,x0,b,xtype)

    if M1 is None and M2 is None:
        if hasattr(A_,'psolve'):
            def left_psolve(b):
                return A_.psolve(b,'left')

            def right_psolve(b):
                return A_.psolve(b,'right')

            def left_rpsolve(b):
                return A_.rpsolve(b,'left')

            def right_rpsolve(b):
                return A_.rpsolve(b,'right')
            M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve)
            M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve)
        else:
            def id(b):
                return b
            M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
            M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'qmrrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(11*n,x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = M1.matvec(work[slice2])
        elif (ijob == 4):
            work[slice1] = M2.matvec(work[slice2])
        elif (ijob == 5):
            work[slice1] = M1.rmatvec(work[slice2])
        elif (ijob == 6):
            work[slice1] = M2.rmatvec(work[slice2])
        elif (ijob == 7):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(x)
        elif (ijob == 8):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #13
0
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, xtype=None, M=None, callback=None, restrt=None):
    """
    Use Generalized Minimal RESidual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real or complex N-by-N matrix of the linear system.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : int
        Provides convergence information:
          * 0  : successful exit
          * >0 : convergence to tolerance not achieved, number of iterations
          * <0 : illegal input or breakdown

    Other parameters
    ----------------
    x0 : {array, matrix}
        Starting guess for the solution (a vector of zeros by default).
    tol : float
        Tolerance to achieve. The algorithm terminates when either the relative
        or the absolute residual is below `tol`.
    restart : int, optional
        Number of iterations between restarts. Larger values increase
        iteration cost, but may be necessary for convergence.
        Default is 20.
    maxiter : int, optional
        Maximum number of iterations (restart cycles).  Iteration will stop
        after maxiter steps even if the specified tolerance has not been
        achieved.
    xtype : {'f','d','F','D'}
        This parameter is DEPRECATED --- avoid using it.

        The type of the result.  If None, then it will be determined from
        A.dtype.char and b.  If A does not have a typecode method then it
        will compute A.matvec(x0) to get a typecode.   To save the extra
        computation when A does not have a typecode attribute use xtype=0
        for the same type as b or use xtype='f','d','F',or 'D'.
        This parameter has been superseded by LinearOperator.
    M : {sparse matrix, dense matrix, LinearOperator}
        Inverse of the preconditioner of A.  M should approximate the
        inverse of A and be easy to solve for (see Notes).  Effective
        preconditioning dramatically improves the rate of convergence,
        which implies that fewer iterations are needed to reach a given
        error tolerance.  By default, no preconditioner is used.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(rk), where rk is the current residual vector.
    restrt : int, optional
        DEPRECATED - use `restart` instead.

    See Also
    --------
    LinearOperator

    Notes
    -----
    A preconditioner, P, is chosen such that P is close to A but easy to solve
    for. The preconditioner parameter required by this routine is
    ``M = P^-1``. The inverse should preferably not be calculated
    explicitly.  Rather, use the following template to produce M::

      # Construct a linear operator that computes P^-1 * x.
      import scipy.sparse.linalg as spla
      M_x = lambda x: spla.spsolve(P, x)
      M = spla.LinearOperator((n, n), M_x)

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import gmres
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = gmres(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """

    # Change 'restrt' keyword to 'restart'
    if restrt is None:
        restrt = restart
    elif restart is not None:
        raise ValueError("Cannot specify both restart and restrt keywords. "
                         "Preferably use 'restart' only.")

    A,M,x,b,postprocess = make_system(A,M,x0,b,xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    if restrt is None:
        restrt = 20
    restrt = min(restrt, n)

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'gmresrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros((6+restrt)*n,dtype=x.dtype)
    work2 = _aligned_zeros((restrt+1)*(2*restrt+2),dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    old_ijob = ijob
    first_pass = True
    resid_ready = False
    iter_num = 1
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, restrt, work, work2, iter_, resid, info, ndx1, ndx2, ijob)
        # if callback is not None and iter_ > olditer:
        #    callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):  # gmres success, update last residual
            if resid_ready and callback is not None:
                callback(resid)
                resid_ready = False

            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(x)
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
            if not first_pass and old_ijob == 3:
                resid_ready = True

            first_pass = False
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1*matvec(work[slice1])
            if resid_ready and callback is not None:
                callback(resid)
                resid_ready = False
                iter_num = iter_num+1

        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)

        old_ijob = ijob
        ijob = 2

        if iter_num > maxiter:
            break

    if info >= 0 and resid > tol:
        # info isn't set appropriately otherwise
        info = maxiter

    return postprocess(x), info
Пример #14
0
def bicg(A,
         b,
         x0=None,
         tol=1e-5,
         maxiter=None,
         xtype=None,
         M=None,
         callback=None):
    A, M, x, b, postprocess = make_system(A, M, x0, b, xtype)

    n = len(b)
    if maxiter is None:
        maxiter = n * 10

    matvec, rmatvec = A.matvec, A.rmatvec
    psolve, rpsolve = M.matvec, M.rmatvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'bicgrevcom')
    stoptest = getattr(_iterative, ltr + 'stoptest2')

    resid = tol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(6 * n, dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    bnrm2 = -1.0
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1 - 1, ndx1 - 1 + n)
        slice2 = slice(ndx2 - 1, ndx2 - 1 + n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = psolve(work[slice2])
        elif (ijob == 4):
            work[slice1] = rpsolve(work[slice2])
        elif (ijob == 5):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(x)
        elif (ijob == 6):
            if ftflag:
                info = -1
                ftflag = False
            bnrm2, resid, info = stoptest(work[slice1], b, bnrm2, tol, info)
        ijob = 2

    if info > 0 and iter_ == maxiter and resid > tol:
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #15
0
def presid_gmres(A,
                 b,
                 verbose,
                 x0=None,
                 tol=1e-05,
                 restart=None,
                 maxiter=None,
                 M=None):
    callback = gmres_counter(verbose)

    A, M, x, b, postprocess = make_system(A, M, x0, b)

    n = len(b)
    if maxiter is None:
        maxiter = n * 10

    if restart is None:
        restart = 20
    restart = min(restart, n)

    matvec = A.matvec
    psolve = M.matvec
    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'gmresrevcom')

    bnrm2 = np.linalg.norm(b)
    Mb_nrm2 = np.linalg.norm(psolve(b))
    get_residual = lambda: np.linalg.norm(matvec(x) - b)
    atol = tol

    if bnrm2 == 0:
        return postprocess(b), 0

    # Tolerance passed to GMRESREVCOM applies to the inner iteration
    # and deals with the left-preconditioned residual.
    ptol_max_factor = 1.0
    ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2)
    resid = np.nan
    presid = np.nan
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros((6 + restart) * n, dtype=x.dtype)
    work2 = _aligned_zeros((restart + 1) * (2 * restart + 2), dtype=x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    old_ijob = ijob
    first_pass = True
    resid_ready = False
    iter_num = 1
    while True:
        ### begin my modifications
        if presid / bnrm2 < atol:
            resid = presid / bnrm2
            info = 1
        if info: ptol = 10000
        ### end my modifications
        x, iter_, presid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, restart, work, work2, iter_, presid, info, ndx1, ndx2, ijob, ptol)
        slice1 = slice(ndx1 - 1, ndx1 - 1 + n)
        slice2 = slice(ndx2 - 1, ndx2 - 1 + n)
        if (ijob == -1):  # gmres success, update last residual
            if resid_ready and callback is not None:
                callback(presid / bnrm2)
                resid_ready = False
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(x)
        elif (ijob == 2):
            work[slice1] = psolve(work[slice2])
            if not first_pass and old_ijob == 3:
                resid_ready = True

            first_pass = False
        elif (ijob == 3):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * matvec(work[slice1])
            if resid_ready and callback is not None:
                callback(presid / bnrm2)
                resid_ready = False
                iter_num = iter_num + 1

        elif (ijob == 4):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)

            # Inner loop tolerance control
            if info or presid > ptol:
                ptol_max_factor = min(1.0, 1.5 * ptol_max_factor)
            else:
                # Inner loop tolerance OK, but outer loop not.
                ptol_max_factor = max(1e-16, 0.25 * ptol_max_factor)

            if resid != 0:
                ptol = presid * min(ptol_max_factor, atol / resid)
            else:
                ptol = presid * ptol_max_factor

        old_ijob = ijob
        ijob = 2

        if iter_num > maxiter:
            info = maxiter
            break

    if info >= 0 and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = maxiter

    return postprocess(x), info, mydict['resnorms']
Пример #16
0
def qmr(A,
        b,
        x0=None,
        tol=1e-5,
        maxiter=None,
        M1=None,
        M2=None,
        callback=None,
        atol=None):
    """Use Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real-valued N-by-N matrix of the linear system.
        Alternatively, ``A`` can be a linear operator which can
        produce ``Ax`` and ``A^T x`` using, e.g.,
        ``scipy.sparse.linalg.LinearOperator``.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    Other Parameters
    ----------------
    x0  : {array, matrix}
        Starting guess for the solution.
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M1 : {sparse matrix, dense matrix, LinearOperator}
        Left preconditioner for A.
    M2 : {sparse matrix, dense matrix, LinearOperator}
        Right preconditioner for A. Used together with the left
        preconditioner M1.  The matrix M1*A*M2 should have better
        conditioned than A alone.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.

    See Also
    --------
    LinearOperator

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import qmr
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = qmr(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """
    A_ = A
    A, M, x, b, postprocess = make_system(A, None, x0, b)

    if M1 is None and M2 is None:
        if hasattr(A_, 'psolve'):

            def left_psolve(b):
                return A_.psolve(b, 'left')

            def right_psolve(b):
                return A_.psolve(b, 'right')

            def left_rpsolve(b):
                return A_.rpsolve(b, 'left')

            def right_rpsolve(b):
                return A_.rpsolve(b, 'right')

            M1 = LinearOperator(A.shape,
                                matvec=left_psolve,
                                rmatvec=left_rpsolve)
            M2 = LinearOperator(A.shape,
                                matvec=right_psolve,
                                rmatvec=right_rpsolve)
        else:

            def id(b):
                return b

            M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
            M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)

    n = len(b)
    if maxiter is None:
        maxiter = n * 10

    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'qmrrevcom')

    get_residual = lambda: np.linalg.norm(A.matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'qmr')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(11 * n, x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1 - 1, ndx1 - 1 + n)
        slice2 = slice(ndx2 - 1, ndx2 - 1 + n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * A.matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * A.rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = M1.matvec(work[slice2])
        elif (ijob == 4):
            work[slice1] = M2.matvec(work[slice2])
        elif (ijob == 5):
            work[slice1] = M1.rmatvec(work[slice2])
        elif (ijob == 6):
            work[slice1] = M2.rmatvec(work[slice2])
        elif (ijob == 7):
            work[slice2] *= sclr2
            work[slice2] += sclr1 * A.matvec(x)
        elif (ijob == 8):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #17
0
def qmr(A, b, x0=None, tol=1e-5, maxiter=None, M1=None, M2=None, callback=None,
        atol=None):
    """Use Quasi-Minimal Residual iteration to solve ``Ax = b``.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The real-valued N-by-N matrix of the linear system.
        It is required that the linear operator can produce
        ``Ax`` and ``A^T x``.
    b : {array, matrix}
        Right hand side of the linear system. Has shape (N,) or (N,1).

    Returns
    -------
    x : {array, matrix}
        The converged solution.
    info : integer
        Provides convergence information:
            0  : successful exit
            >0 : convergence to tolerance not achieved, number of iterations
            <0 : illegal input or breakdown

    Other Parameters
    ----------------
    x0  : {array, matrix}
        Starting guess for the solution.
    tol, atol : float, optional
        Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
        The default for ``atol`` is ``'legacy'``, which emulates
        a different legacy behavior.

        .. warning::

           The default value for `atol` will be changed in a future release.
           For future compatibility, specify `atol` explicitly.
    maxiter : integer
        Maximum number of iterations.  Iteration will stop after maxiter
        steps even if the specified tolerance has not been achieved.
    M1 : {sparse matrix, dense matrix, LinearOperator}
        Left preconditioner for A.
    M2 : {sparse matrix, dense matrix, LinearOperator}
        Right preconditioner for A. Used together with the left
        preconditioner M1.  The matrix M1*A*M2 should have better
        conditioned than A alone.
    callback : function
        User-supplied function to call after each iteration.  It is called
        as callback(xk), where xk is the current solution vector.

    See Also
    --------
    LinearOperator

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import qmr
    >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
    >>> b = np.array([2, 4, -1], dtype=float)
    >>> x, exitCode = qmr(A, b)
    >>> print(exitCode)            # 0 indicates successful convergence
    0
    >>> np.allclose(A.dot(x), b)
    True
    """
    A_ = A
    A, M, x, b, postprocess = make_system(A, None, x0, b)

    if M1 is None and M2 is None:
        if hasattr(A_,'psolve'):
            def left_psolve(b):
                return A_.psolve(b,'left')

            def right_psolve(b):
                return A_.psolve(b,'right')

            def left_rpsolve(b):
                return A_.rpsolve(b,'left')

            def right_rpsolve(b):
                return A_.rpsolve(b,'right')
            M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve)
            M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve)
        else:
            def id(b):
                return b
            M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
            M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)

    n = len(b)
    if maxiter is None:
        maxiter = n*10

    ltr = _type_conv[x.dtype.char]
    revcom = getattr(_iterative, ltr + 'qmrrevcom')

    get_residual = lambda: np.linalg.norm(A.matvec(x) - b)
    atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'qmr')
    if atol == 'exit':
        return postprocess(x), 0

    resid = atol
    ndx1 = 1
    ndx2 = -1
    # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
    work = _aligned_zeros(11*n,x.dtype)
    ijob = 1
    info = 0
    ftflag = True
    iter_ = maxiter
    while True:
        olditer = iter_
        x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
           revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
        if callback is not None and iter_ > olditer:
            callback(x)
        slice1 = slice(ndx1-1, ndx1-1+n)
        slice2 = slice(ndx2-1, ndx2-1+n)
        if (ijob == -1):
            if callback is not None:
                callback(x)
            break
        elif (ijob == 1):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(work[slice1])
        elif (ijob == 2):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.rmatvec(work[slice1])
        elif (ijob == 3):
            work[slice1] = M1.matvec(work[slice2])
        elif (ijob == 4):
            work[slice1] = M2.matvec(work[slice2])
        elif (ijob == 5):
            work[slice1] = M1.rmatvec(work[slice2])
        elif (ijob == 6):
            work[slice1] = M2.rmatvec(work[slice2])
        elif (ijob == 7):
            work[slice2] *= sclr2
            work[slice2] += sclr1*A.matvec(x)
        elif (ijob == 8):
            if ftflag:
                info = -1
                ftflag = False
            resid, info = _stoptest(work[slice1], atol)
        ijob = 2

    if info > 0 and iter_ == maxiter and not (resid <= atol):
        # info isn't set appropriately otherwise
        info = iter_

    return postprocess(x), info
Пример #18
0
def presid_gmres(A,
                 M,
                 b,
                 verbose,
                 x0=None,
                 tol=1e-05,
                 restart=None,
                 maxiter=None):
    matvec = A
    psolve = M
    comm = A.comm
    rank = A.rank
    n = A.n
    dtype = A.dtype
    isMaster = rank == 0

    callback = gmres_counter(verbose) if isMaster else None
    x = np.zeros(n, dtype=dtype) if x0 is None else x0

    if maxiter is None: maxiter = n * 10
    if restart is None: restart = 20
    restart = min(restart, n)

    ltr = _type_conv[np.dtype(dtype).char]
    revcom = getattr(_iterative, ltr + 'gmresrevcom')

    pb = psolve(b)
    mb = matvec(b)

    if rank == 0:
        bnrm2 = np.linalg.norm(b)
        Mb_nrm2 = np.linalg.norm(pb)
        get_residual = lambda: np.linalg.norm(mb - b)
        atol = tol
    else:
        bnrm2 = None
    bnrm2 = comm.bcast(bnrm2, root=0)

    if bnrm2 == 0:
        return postprocess(b), 0

    if rank == 0:
        # Tolerance passed to GMRESREVCOM applies to the inner iteration
        # and deals with the left-preconditioned residual.
        ptol_max_factor = 1.0
        ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2)
        resid = np.nan
        presid = np.nan
        # Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
        work2 = _aligned_zeros((restart + 1) * (2 * restart + 2), dtype=dtype)
        info = 0
        ftflag = True
        iter_ = maxiter
        first_pass = True
        resid_ready = False
    ndx1 = 1
    ndx2 = -1
    ijob = 1
    old_ijob = ijob
    work = _aligned_zeros((6 + restart) * n, dtype=dtype)
    iter_num = 1

    while True:
        if rank == 0:
            ### begin my modifications
            if presid / bnrm2 < atol:
                resid = presid / bnrm2
                info = 1
            if info: ptol = 10000
            ### end my modifications
            x, iter_, presid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
               revcom(b, x, restart, work, work2, iter_, presid, info, ndx1, ndx2, ijob, ptol)
        ijob = comm.bcast(ijob, root=0)
        ndx1 = comm.bcast(ndx1, root=0)
        ndx2 = comm.bcast(ndx2, root=0)
        slice1 = slice(ndx1 - 1, ndx1 - 1 + n)
        slice2 = slice(ndx2 - 1, ndx2 - 1 + n)
        if (ijob == -1):  # gmres success, update last residual
            if rank == 0:
                if resid_ready and callback is not None:
                    callback(presid / bnrm2)
                    resid_ready = False
            break
        elif (ijob == 1):
            upd = matvec(x)
            if rank == 0:
                work[slice2] *= sclr2
                work[slice2] += sclr1 * upd
        elif (ijob == 2):
            upd = psolve(work[slice2])
            if rank == 0:
                work[slice1] = upd
                if not first_pass and old_ijob == 3:
                    resid_ready = True
                first_pass = False
        elif (ijob == 3):
            upd = matvec(work[slice1])
            if rank == 0:
                work[slice2] *= sclr2
                work[slice2] += sclr1 * upd
                if resid_ready and callback is not None:
                    callback(presid / bnrm2)
                    resid_ready = False
                    iter_num = iter_num + 1
        elif (ijob == 4):
            if rank == 0:
                if ftflag:
                    info = -1
                    ftflag = False
                resid, info = _stoptest(work[slice1], atol)
                # Inner loop tolerance control
                if info or presid > ptol:
                    ptol_max_factor = min(1.0, 1.5 * ptol_max_factor)
                else:
                    # Inner loop tolerance OK, but outer loop not.
                    ptol_max_factor = max(1e-16, 0.25 * ptol_max_factor)

                if resid != 0:
                    ptol = presid * min(ptol_max_factor, atol / resid)
                else:
                    ptol = presid * ptol_max_factor

        if rank == 0:
            old_ijob = ijob
            ijob = 2

        # need to set ijob according to the master rank
        ijob = comm.bcast(ijob, root=0)
        iter_num = comm.bcast(iter_num, root=0)

        if iter_num > maxiter:
            info = maxiter
            break

    if rank == 0:
        if info >= 0 and not (resid <= atol):
            # info isn't set appropriately otherwise
            info = maxiter

        return x, info, mydict['resnorms']
    else:
        return None