Пример #1
0
def lens_efficiency(sourcedist, dcomov, dcomov_lim, prec=12):
    """
    Signature:    lens_efficiency(sourcedist, dcomov, dcomov_lim)

    Description:  Computes the lens efficiency function q (see e.g. equation
                  (24)the review article by Martin Kilbinger "Cosmology with
                  cosmic shear observations: a review", July 21, 2015,
                  arXiv:1411.0115v2), given a source distribution function n and
                  two comoving distances.

    Input types:  sourcedist - np.ndarray
                  dcomov - float (or int) or np.ndarray
                  dcomov_lim - float

    Output types: float (or np.ndarray if type(dcomov)=np.ndarray)
    """

    # interpolate the source distribution function
    nfunc = _CubicSpline(_np.log10(sourcedist['chi']),
                         _np.log10(sourcedist['n']))

    result = []

    if isinstance(dcomov, _np.ndarray):

        for distance in dcomov:
            chi = _np.linspace(distance, dcomov_lim, 2**prec + 1)
            sourcedistribution = 10**nfunc(_np.log10(chi))
            integrand = sourcedistribution * (1 - distance / chi)
            result.append(_romb(integrand, chi[1] - chi[0]))

        return _np.asarray(result)

    elif isinstance(dcomov, (float, int)):
        chi = _np.linspace(dcomov, dcomov_lim, 2**prec + 1)
        sourcedistribution = 10**nfunc(_np.log10(chi))
        integrand = sourcedistribution * (1 - dcomov / chi)

        return _romb(integrand, chi[1] - chi[0])

    else:
        raise (TypeError,
               "The second argument 'dcomov' must be either a float,\
                          an integer or a np.ndarray.\n")
Пример #2
0
def dist_comov(emu_pars_dict, z1, z2, prec=12):
    """
    Signature:   dist_comov(emu_pars_dict, z1, z2, prec=12)

    Description: Computes the comoving distance (in units of Mpc/h) between 
                 objects at redshifts z1 and z2 for a cosmology specified by
                 the parameters Om_m (matter density parameter),
                 Om_rad (radiation density parameter) and Om_DE (dark
                 energy density parameter), the Hubble parameter H0,
                 and the dark energy equation of state parameters w0
                 and wa.

    Input type:  python dictionary (containing the 6 LCDM parameters)
                 floats or np.ndarrays 

    Output type: float or np.ndarray

    REMARK 1:    If the redshifts z1 and z2 are passed as vectors (1-dimen-
                 sional np.ndarrays) then the comoving distances will be com-
                 puted between the pairs of redshift (z1_1, z2_1), (z1_2,z2_2),
                 (z1_3, z2_3) etc. Hence, if the vectors have length n, the 
                 resulting vector of d_comov will also be of length n (and not
                 n(n-1)). We do NOT compute the d_comov for all possible red-
                 shift combinations.

    REMARK 2:    The geometry of the Universe is fixed to be flat (i.e.
                 Omega_curvature = 1) and the radiation energy density
                 is set to Om_rad = 4.183709411969527e-5/(h*h). These
                 values were assumed in the construction process of 
                 EuclidEmulator and hence must be used whenever one is
                 working with it.
    """

    if isinstance(z1, (float, int)) and isinstance(z2, (float, int)):
        z1 = _np.array([z1])
        z2 = np.array([z2])

    a1_vec = _cc.z_to_a(z1)
    a2_vec = _cc.z_to_a(z2)

    d_comov = []
    for a1, a2 in zip(a1_vec, a2_vec):
        if a1 > a2:
            a1, a2 = a2, a1  # swap values
        avec = _np.linspace(a1, a2, 2**prec + 1)
        delta_a = avec[1] - avec[0]

        H = _cc.a_to_hubble(emu_pars_dict, avec)

        d_comov.append(_romb(1. / (avec * avec * H), dx=delta_a))

    chi = _np.array(
        d_comov)  # here the comoving distances have units of Mpc/(km/s)

    # return result in units of Mpc/h
    return SPEED_OF_LIGHT_IN_KILOMETERS_PER_SECOND * chi * emu_pars_dict['h']
Пример #3
0
    def get_pconv(emu_pars_dict, sourcedist_func, prec=7):
        """
        Signature:   get_pconv(emu_pars_dict, sourcedist_func, prec=12)

        Description: Converts a matter power spectrum into a convergence power
                     spectrum via the Limber equation (conversion is based on
                     equation (29) of the review article by Martin Kilbinger
                     "Cosmology with cosmic shear observations: a review",
                     July 21, 2015,arXiv:1411.0115v2).
                     REMARK: The g in that equation is a typo and should be q
                     which is defined in equation (24).

                     The input variable emu_pars_dict is a dictionary contai-
                     ning the cosmological parameters and sourcedist is a
                     dictionary of the format {'chi': ..., 'n': ...} containing
                     the a vector of comoving distances ("chi") together with
                     the number counts of source galaxies at these distances
                     or redshifts, respectively.

                     The precision parameter prec is an integer which defines
                     at how many redshifts the matter power spectrum is emula-
                     ted for integration in the Limber equation. The relation
                     between the number of redshifts len_redshifts and the
                     parameter prec is given by

                                     len_redshifts = 2^prec + 1

                     REMARK: The 'chi' vector in the sourcedist dictionary
                     should span the range from 0 to chi(z=5).

        Input type:  emu_pars_dict - dictionary
                     sourcedist - function object
                     prec - int

        Ouput type:  dictionary of the form {'l': ..., 'Cl': ...}
        """
        def limber_prefactor(emu_pars_dict):
            """
            * NESTED FUNCTION * (defined inside get_pconv)

            Signature:          LimberPrefactor(emu_pars_dict)

            Description:        Computes the cosmology dependend prefactor
                                of the integral in the Limber approximation.

            Input type:         emu_pars_dict - dictionary

            Output type:        float
            """
            c_inv = 1. / _bg.SPEED_OF_LIGHT_IN_KILOMETERS_PER_SECOND
            h = emu_pars_dict['h']
            H0 = 100 * h
            Om_m = emu_pars_dict['om_m'] / (h * h)

            # compute prefactor of limber equation integral
            # --> in units of [Mpc^4]
            prefac = 2.25 * Om_m * Om_m * H0 * H0 * H0 * H0 * c_inv * c_inv * c_inv * c_inv

            # convert prefactor units to [(Mpc/h)^4]
            prefac *= h * h * h * h

            return prefac

        def eval_lensingefficiency(emu_pars_dict, sd_func, z_vec):
            """
            * NESTED FUNCTION * (defined inside get_pconv)

            Signature:  eval_lensingefficiency(emu_pars_dict, sd_func, z_vec)

            Descrition: Evaluates the lensing efficiency function for a given
                        cosmology and source galaxy distribution function at
                        a number of different comoving distances (corresponding
                        to different redshifts).

            Input types: emu_pars_dict - dictionary
                         sd_func - function object
                         z_vec - numpy.ndarray

            Output types: numpy.ndarray
                          numpy.ndarray
            """
            chi_lim = _bg.dist_comov(emu_pars_dict, 1e-12, 5.0)  # in Mpc/h
            chi_vec = _bg.dist_comov(emu_pars_dict, _np.zeros_like(z_vec),
                                     z_vec)

            source_dict = {'chi': chi_vec, 'n': sd_func(z_vec)}

            lenseff = _lens.lens_efficiency(source_dict, chi_vec, chi_lim)

            return (chi_vec, lenseff)

        def get_pnonlin_of_l_and_z(emu_pars_dict, z_vec, l_vec):
            """
            * NESTED FUNCTION * (defined inside get_pconv)

            Signature:          get_P_of_l_and_z(emu_pars_dict, z_vec, l_vec)

            Description:        This function computes the different k
                                ranges for the given cosmology at all
                                different redshifts and computes the power
                                spectrum for these redshifts at these k modes.

            Input types:        emu_pars_dict - dictionary
                                z_vec - numpy.ndarray
                                l_vec - numpy.ndarray

            Output type:        numpy.ndarray
            """
            P = get_pnonlin(emu_pars_dict, z_vec)  # call EuclidEmulator

            pnonlin_array = []
            for i, z in enumerate(z_vec):
                func = _CubicSpline(_np.log10(P['k']),
                                    _np.log10(P['P_nonlin']['z' + str(i)]))
                k = _cc.l_to_k(emu_pars_dict, l_vec, z)  # needs to be called
                # inside loop because
                # different z-values
                # lead to different
                # results

                # evaluate the interpolating function of Pnl for all k in the
                # range allowed by EuclidEmulator (this range is given by
                # P['k'])
                pmatternl = [
                    10.0**func(_np.log10(kk)) for kk in k
                    if kk >= P['k'].min() and kk <= P['k'].max()
                ]
                # for k values below the lower bound or above the upper bound
                # of this k range, set the contributions to 0.0
                p_toosmall = [0.0 for kk in k if kk < P['k'].min()]
                p_toobig = [0.0 for kk in k if kk > P['k'].max()]

                pnonlin_array.append(
                    _np.array(p_toosmall + pmatternl + p_toobig))

            # get the non-linear matter power spectrum in units of [(Mpc/h)^3]
            return _np.asarray(pnonlin_array).transpose()

        # =====================================
        if _Class.__module__ not in _sys.modules:
            print "You have not imported neither classee nor classy.\n \
                   Emulating convergence power spectrum is hence not\n \
                   possible."

            return None

        z_vec = _np.logspace(_np.log10(5e-2), _np.log10(4.999999), 2**prec + 1)
        a_inv_vec = 1. + z_vec

        len_l_vec = int(1e4)
        l_vec = _np.linspace(1e1, 2e3, len_l_vec)

        # get the lensing efficiency
        chi_vec, q_vec = eval_lensingefficiency(emu_pars_dict, sourcedist_func,
                                                z_vec)
        assert len(z_vec) == len(chi_vec)

        # get the matter power spectrum at the correct k modes
        pnonlin_array = get_pnonlin_of_l_and_z(emu_pars_dict, z_vec, l_vec)

        assert all([
            len(chi_vec) == len(pnonlin_array[i])
            for i in range(len(pnonlin_array))
        ])

        # Compose integrand
        integrand = _np.array([
            q_vec * q_vec * a_inv_vec * a_inv_vec * pnonlin_array[i]
            for i in range(len_l_vec)
        ])

        assert integrand.shape == pnonlin_array.shape

        # perform integral (bear in mind that only the product of the
        # integral and the prefac is truely dimensionless) and return
        return {
            'l':
            l_vec,
            'Cl':
            limber_prefactor(emu_pars_dict) *
            _romb(integrand, chi_vec[1] - chi_vec[0])
        }