Пример #1
0
def interp1d(x, y, xnew, kind='linear', fill_value=np.nan, **kws):
    """interpolate x, y array onto new x values, using one of
    linear, quadratic, or cubic interpolation

        > ynew = interp1d(x, y, xnew, kind='linear')

    Arguments
    ---------
      x          original x values
      y          original y values
      xnew       new x values for values to be interpolated to
      kind       method to use: one of 'linear', 'quadratic', 'cubic'
      fill_value value to use to fill values for out-of-range x values

    Notes
    -----
    unlike interp, this version will not extrapolate for values of `xnew`
    that are outside the range of `x` -- it will use NaN or `fill_value`.
    this is a bare-bones wrapping of scipy.interpolate.interp1d.

    see also: interp

    """
    if '_larch' in kws:
        kws.pop('_larch')
    kwargs = {
        'kind': kind.lower(),
        'fill_value': fill_value,
        'copy': False,
        'bounds_error': False
    }
    kwargs.update(kws)
    return scipy_interp1d(x, y, **kwargs)(xnew)
Пример #2
0
def interp1d(x, y, xnew, kind='linear', fill_value=np.nan, **kws):
    """interpolate x, y array onto new x values, using one of
    linear, quadratic, or cubic interpolation

        > ynew = interp1d(x, y, xnew, kind='linear')

    Arguments
    ---------
      x          original x values
      y          original y values
      xnew       new x values for values to be interpolated to
      kind       method to use: one of 'linear', 'quadratic', 'cubic'
      fill_value value to use to fill values for out-of-range x values

    Notes
    -----
    unlike interp, this version will not extrapolate for values of `xnew`
    that are outside the range of `x` -- it will use NaN or `fill_value`.
    this is a bare-bones wrapping of scipy.interpolate.interp1d.

    see also: interp

    """
    if '_larch' in kws:
        kws.pop('_larch')
    kwargs  = {'kind': kind.lower(), 'fill_value': fill_value,
               'copy': False, 'bounds_error': False}
    kwargs.update(kws)
    return  scipy_interp1d(x, y, **kwargs)(xnew)
Пример #3
0
def interp1d(y, n=101, dtype=None, kind='linear', axis=-1, copy=True, bounds_error=True, fill_value=np.nan):
	t0       = np.arange(y.shape[0])
	t1       = np.linspace(0, y.shape[0]-1, n)
	f        = scipy_interp1d(t0, y, kind, axis, copy, bounds_error, fill_value)
	y1       = f(t1)
	if dtype != None:
		y1   = np.asarray(y1, dtype=dtype)
	return y1
Пример #4
0
def interp1d(y,
             n=101,
             dtype=None,
             kind='linear',
             axis=-1,
             copy=True,
             bounds_error=True,
             fill_value=np.nan):
    t0 = np.arange(y.shape[0])
    t1 = np.linspace(0, y.shape[0] - 1, n)
    f = scipy_interp1d(t0, y, kind, axis, copy, bounds_error, fill_value)
    y1 = f(t1)
    if dtype != None:
        y1 = np.asarray(y1, dtype=dtype)
    return y1