Пример #1
0
 def on_epoch_end (self, epoch, logs=None):
   """Calls model_weights_to_images and writes the images to
   self.dir\<layer_name>_<epoch number>.png"""
   images = WeightWriter.model_weights_to_images (self.model)
   
   # write the images
   for name, image in images:
     save_image (join (self.dir, ".".join ([name,  str (epoch).zfill (4), "png"])), image)
Пример #2
0
    def display_current_results(self, visuals, size, epoch, iteration):
        if self.tboard:
            img_summaries = []
            for label, image_numpy in visuals.items():
                self.writer.add_image("size-{}-epoch-{}-iter-{}-{}.jpg".format(
                    size, epoch, iteration, label),
                                      image_numpy,
                                      dataformats='HWC')

        if self.use_html:
            for label, image_numpy in visuals.items():
                if isinstance(image_numpy, list):
                    for i in range(len(image_numpy)):
                        img_path = os.path.join(
                            self.img_dir,
                            "size-{}-epoch-{}-iter-{}-{}_{}.jpg".format(
                                size, epoch, iteration, label, i))
                        misc.save_image(image_numpy[i], img_path)

                else:
                    img_path = os.path.join(
                        self.img_dir, "size-{}-epoch-{}-iter-{}-{}.jpg".format(
                            size, epoch, iteration, label))
                    misc.save_image(image_numpy, img_path)

            # update webpage
            webpage = html.HTML(self.web_dir,
                                "Experiment name = {}".format(self.name),
                                refresh=30)
            images = sorted(os.listdir(self.img_dir), reverse=True)
            webpage.add_header("Training process visulization")
            ims = []
            txts = []
            links = []
            for image in images:
                ims.append(image)
                links.append(image)
                label = image.split('.')[0].split('_')[0].split('-')[-1]
                label += ": " + image.split('.')[0].replace('_', '@')
                txts.append(label)

            if len(ims) < 10:
                webpage.add_images(ims, txts, links, width=self.win_size)
            else:
                num = int(round(len(ims) / 2.0))
                webpage.add_images(ims[:num],
                                   txts[:num],
                                   links[:num],
                                   width=self.win_size)
                webpage.add_images(ims[num:],
                                   txts[num:],
                                   links[num:],
                                   width=self.win_size)

            webpage.save()
Пример #3
0
def encode_patchwork(inp, out, msg):
    """Hides a text message in pixels of two key streams."""
    assert os.path.isfile(inp), '%s is not a file.' % inp
    img = read_img(inp)

    A = get_random_pos(len(msg), img)
    B = get_random_pos(len(msg), img, A)
    print "A: %s" % json.dumps(A)
    print "B: %s" % json.dumps(B)

    #while writing an jpg image, compression destroys the steganographic message
    ext = os.path.splitext(out)[1].lower()
    assert ext != '.jpeg' and ext != '.jpg', 'jpg/jpeg is currently not a valid extension for output images.'
    save_image(out, encode_msg_with_patchwork(img, msg, A, B))
Пример #4
0
Файл: hide.py Проект: qll/shit
def encode_patchwork(inp, out, msg):
    """Hides a text message in pixels of two key streams."""
    assert os.path.isfile(inp), '%s is not a file.' % inp
    img = read_img(inp)
    
    A = get_random_pos(len(msg), img)
    B = get_random_pos(len(msg), img, A)
    print "A: %s" %json.dumps(A)
    print "B: %s" %json.dumps(B)

    #while writing an jpg image, compression destroys the steganographic message
    ext = os.path.splitext(out)[1].lower()
    assert ext != '.jpeg' and ext != '.jpg', 'jpg/jpeg is currently not a valid extension for output images.'
    save_image(out, encode_msg_with_patchwork(img, msg, A, B))
Пример #5
0
    def on_epoch_end(self, epoch, logs=None):
        """Run prediction over n items,
    store inputs and outputs in <dir>/<epoch_number>,
    store scores in <dir>/<epoch_number>/scores.csv"""
        epoch_path = join(self.dir, str(epoch).zfill(4))

        try:
            makedirs(epoch_path)
        except IOError:
            pass

        for i in range(0, self.count):
            X, _ = next(self.data)

            for j in range(0, X.shape[0]):
                data_path = join(epoch_path, "%04i_%04i_in.png" % (i, j))
                save_image(data_path, X[j, :, :, 0])

            Y = self.model.predict(X, batch_size=X.shape[0])

            # for multiple outputs, assume the first output is an image...
            if type(Y) is type([]):
                for idx, y in enumerate(Y):
                    for j in range(0, y.shape[0]):
                        pred_path = join(
                            epoch_path,
                            "%04i_%04i_pred_%02i.png" % (i, j, idx))
                        save_image(pred_path, y[j, :, :, 0])
            else:
                for j in range(0, Y.shape[0]):
                    pred_path = join(epoch_path, "%04i_%04i_pred.png" % (i, j))
                    save_image(pred_path, Y[j, :, :, 0])
Пример #6
0
def write_img(path, img_array):
    image = img_array.reshape(img_array.shape)
    save_image(path, image)
Пример #7
0
def generate_fake_images(run_id,
                         snapshot=None,
                         grid_size=[1, 1],
                         batch_size=8,
                         num_pngs=1,
                         image_shrink=1,
                         png_prefix=None,
                         random_seed=1000,
                         minibatch_size=8):
    network_pkl = misc.locate_network_pkl(run_id, snapshot)
    if png_prefix is None:
        png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-'
    random_state = np.random.RandomState(random_seed)

    print('Loading network from "%s"...' % network_pkl)
    G, D, Gs = misc.load_network_pkl(run_id, snapshot)

    lsfm_model = m3io.import_lsfm_model(
        '/home/baris/Projects/faceganhd/models/all_all_all.mat')
    lsfm_tcoords = \
    mio.import_pickle('/home/baris/Projects/team members/stelios/UV_spaces_V2/UV_dicts/full_face/512_UV_dict.pkl')[
        'tcoords']
    lsfm_params = []

    result_subdir = misc.create_result_subdir(config.result_dir, config.desc)
    for png_idx in range(int(num_pngs / batch_size)):
        start = time.time()
        print('Generating png %d-%d / %d... in ' %
              (png_idx * batch_size, (png_idx + 1) * batch_size, num_pngs),
              end='')
        latents = misc.random_latents(np.prod(grid_size) * batch_size,
                                      Gs,
                                      random_state=random_state)
        labels = np.zeros([latents.shape[0], 0], np.float32)
        images = Gs.run(latents,
                        labels,
                        minibatch_size=minibatch_size,
                        num_gpus=config.num_gpus,
                        out_shrink=image_shrink)
        for i in range(batch_size):
            if images.shape[1] == 3:
                mio.export_pickle(
                    images[i],
                    os.path.join(
                        result_subdir,
                        '%s%06d.pkl' % (png_prefix, png_idx * batch_size + i)))
                # misc.save_image(images[i], os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx*batch_size+i)), [0,255], grid_size)
            elif images.shape[1] == 6:
                mio.export_pickle(images[i][3:6],
                                  os.path.join(
                                      result_subdir, '%s%06d.pkl' %
                                      (png_prefix, png_idx * batch_size + i)),
                                  overwrite=True)
                misc.save_image(
                    images[i][0:3],
                    os.path.join(
                        result_subdir,
                        '%s%06d.png' % (png_prefix, png_idx * batch_size + i)),
                    [-1, 1], grid_size)
            elif images.shape[1] == 9:
                texture = Image(np.clip(images[i, 0:3] / 2 + 0.5, 0, 1))
                mesh_raw = from_UV_2_3D(Image(images[i, 3:6]))
                normals = images[i, 6:9]
                normals_norm = (normals - normals.min()) / (normals.max() -
                                                            normals.min())
                mesh = lsfm_model.reconstruct(mesh_raw)
                lsfm_params.append(lsfm_model.project(mesh_raw))
                t_mesh = TexturedTriMesh(mesh.points, lsfm_tcoords.points,
                                         texture, mesh.trilist)
                m3io.export_textured_mesh(
                    t_mesh,
                    os.path.join(result_subdir,
                                 '%06d.obj' % (png_idx * minibatch_size + i)),
                    texture_extension='.png')
                mio.export_image(
                    Image(normals_norm),
                    os.path.join(
                        result_subdir,
                        '%06d_nor.png' % (png_idx * minibatch_size + i)))
                shape = images[i, 3:6]
                shape_norm = (shape - shape.min()) / (shape.max() -
                                                      shape.min())
                mio.export_image(
                    Image(shape_norm),
                    os.path.join(
                        result_subdir,
                        '%06d_shp.png' % (png_idx * minibatch_size + i)))
                mio.export_pickle(
                    t_mesh,
                    os.path.join(result_subdir,
                                 '%06d.pkl' % (png_idx * minibatch_size + i)))

        print('%0.2f seconds' % (time.time() - start))

    open(os.path.join(result_subdir, '_done.txt'), 'wt').close()
Пример #8
0
Файл: hide.py Проект: qll/shit
def write_img(path, img_array):
    image = img_array.reshape(img_array.shape)
    save_image(path, image)
Пример #9
0
def generate_fake_images(run_id,
                         snapshot=None,
                         grid_size=[1, 1],
                         batch_size=8,
                         num_pngs=1,
                         image_shrink=1,
                         png_prefix=None,
                         random_seed=1000,
                         minibatch_size=8):
    network_pkl = misc.locate_network_pkl(run_id, snapshot)
    if png_prefix is None:
        png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-'
    random_state = np.random.RandomState(random_seed)

    print('Loading network from "%s"...' % network_pkl)
    G, D, Gs = misc.load_network_pkl(run_id, snapshot)

    result_subdir = misc.create_result_subdir(config_test.result_dir,
                                              config_test.desc)
    for png_idx in range(int(num_pngs / batch_size)):
        start = time.time()
        print('Generating png %d-%d / %d... in ' %
              (png_idx * batch_size, (png_idx + 1) * batch_size, num_pngs),
              end='')
        latents = misc.random_latents(np.prod(grid_size) * batch_size,
                                      Gs,
                                      random_state=random_state)
        labels = np.zeros([latents.shape[0], 7], np.float32)
        images = Gs.run(latents,
                        labels,
                        minibatch_size=minibatch_size,
                        num_gpus=config_test.num_gpus,
                        out_shrink=image_shrink)
        for i in range(batch_size):
            if images.shape[1] == 3:
                mio.export_pickle(
                    images[i],
                    os.path.join(
                        result_subdir,
                        '%s%06d.pkl' % (png_prefix, png_idx * batch_size + i)))
                # misc.save_image(images[i], os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx*batch_size+i)), [0,255], grid_size)
            elif images.shape[1] == 6:
                mio.export_pickle(images[i][3:6],
                                  os.path.join(
                                      result_subdir, '%s%06d.pkl' %
                                      (png_prefix, png_idx * batch_size + i)),
                                  overwrite=True)
                misc.save_image(
                    images[i][0:3],
                    os.path.join(
                        result_subdir,
                        '%s%06d.png' % (png_prefix, png_idx * batch_size + i)),
                    [-1, 1], grid_size)
            elif images.shape[1] == 9:
                mio.export_pickle(images[i][3:6],
                                  os.path.join(
                                      result_subdir, '%s%06d_shp.pkl' %
                                      (png_prefix, png_idx * batch_size + i)),
                                  overwrite=True)
                mio.export_pickle(images[i][6:9],
                                  os.path.join(
                                      result_subdir, '%s%06d_nor.pkl' %
                                      (png_prefix, png_idx * batch_size + i)),
                                  overwrite=True)
                misc.save_image(
                    images[i][0:3],
                    os.path.join(
                        result_subdir,
                        '%s%06d.png' % (png_prefix, png_idx * batch_size + i)),
                    [-1, 1], grid_size)
        print('%0.2f seconds' % (time.time() - start))

    open(os.path.join(result_subdir, '_done.txt'), 'wt').close()