Пример #1
0
    def test_correct_results(self, min_zoom, max_zoom, order, mode, cval,
                             prefilter, use_gpu, keep_size):
        key = "img"
        random_zoom = RandZoomd(
            key,
            prob=1.0,
            min_zoom=min_zoom,
            max_zoom=max_zoom,
            interp_order=order,
            mode=mode,
            cval=cval,
            prefilter=prefilter,
            use_gpu=use_gpu,
            keep_size=keep_size,
        )
        random_zoom.set_random_state(234)

        zoomed = random_zoom({key: self.imt[0]})
        expected = list()
        for channel in self.imt[0]:
            expected.append(
                zoom_scipy(channel,
                           zoom=random_zoom._zoom,
                           mode=mode,
                           order=order,
                           cval=cval,
                           prefilter=prefilter))
        expected = np.stack(expected).astype(np.float32)
        self.assertTrue(np.allclose(expected, zoomed[key]))
Пример #2
0
    def test_correct_results(self, min_zoom, max_zoom, mode, align_corners,
                             keep_size):
        key = "img"
        random_zoom = RandZoomd(
            key,
            prob=1.0,
            min_zoom=min_zoom,
            max_zoom=max_zoom,
            mode=mode,
            align_corners=align_corners,
            keep_size=keep_size,
        )
        random_zoom.set_random_state(1234)

        zoomed = random_zoom({key: self.imt[0]})
        expected = []
        for channel in self.imt[0]:
            expected.append(
                zoom_scipy(channel,
                           zoom=random_zoom._zoom,
                           mode="nearest",
                           order=0,
                           prefilter=False))
        expected = np.stack(expected).astype(np.float32)
        np.testing.assert_allclose(expected, zoomed[key], atol=1.0)
Пример #3
0
    def test_gpu_zoom(self, min_zoom, max_zoom, order, mode, cval, prefilter):
        key = "img"
        if importlib.util.find_spec("cupy"):
            random_zoom = RandZoomd(
                key,
                prob=1.0,
                min_zoom=min_zoom,
                max_zoom=max_zoom,
                interp_order=order,
                mode=mode,
                cval=cval,
                prefilter=prefilter,
                use_gpu=True,
                keep_size=False,
            )
            random_zoom.set_random_state(234)

            zoomed = random_zoom({key: self.imt[0]})
            expected = list()
            for channel in self.imt[0]:
                expected.append(
                    zoom_scipy(channel,
                               zoom=random_zoom._zoom,
                               mode=mode,
                               order=order,
                               cval=cval,
                               prefilter=prefilter))
            expected = np.stack(expected).astype(np.float32)
            self.assertTrue(np.allclose(expected, zoomed[key]))
Пример #4
0
    def test_correct_results(self, min_zoom, max_zoom, mode, align_corners,
                             keep_size):
        key = "img"
        random_zoom = RandZoomd(
            key,
            prob=1.0,
            min_zoom=min_zoom,
            max_zoom=max_zoom,
            mode=mode,
            align_corners=align_corners,
            keep_size=keep_size,
        )
        for p in TEST_NDARRAYS:
            random_zoom.set_random_state(1234)

            zoomed = random_zoom({key: p(self.imt[0])})
            expected = [
                zoom_scipy(channel,
                           zoom=random_zoom.rand_zoom._zoom,
                           mode="nearest",
                           order=0,
                           prefilter=False) for channel in self.imt[0]
            ]

            expected = np.stack(expected).astype(np.float32)
            assert_allclose(zoomed[key], p(expected), atol=1.0)
Пример #5
0
 def test_gpu_zoom(self, _, zoom, order, mode, cval, prefilter):
     key = "img"
     if importlib.util.find_spec("cupy"):
         zoom_fn = Zoomd(
             key,
             zoom=zoom,
             interp_order=order,
             mode=mode,
             cval=cval,
             prefilter=prefilter,
             use_gpu=True,
             keep_size=False,
         )
         zoomed = zoom_fn({key: self.imt[0]})
         expected = list()
         for channel in self.imt[0]:
             expected.append(
                 zoom_scipy(channel,
                            zoom=zoom,
                            mode=mode,
                            order=order,
                            cval=cval,
                            prefilter=prefilter))
         expected = np.stack(expected).astype(np.float32)
         self.assertTrue(np.allclose(expected, zoomed[key]))
Пример #6
0
 def test_correct_results(self, zoom, order, mode, cval, prefilter, use_gpu,
                          keep_size):
     key = "img"
     zoom_fn = Zoomd(
         key,
         zoom=zoom,
         interp_order=order,
         mode=mode,
         cval=cval,
         prefilter=prefilter,
         use_gpu=use_gpu,
         keep_size=keep_size,
     )
     zoomed = zoom_fn({key: self.imt[0]})
     expected = list()
     for channel in self.imt[0]:
         expected.append(
             zoom_scipy(channel,
                        zoom=zoom,
                        mode=mode,
                        order=order,
                        cval=cval,
                        prefilter=prefilter))
     expected = np.stack(expected).astype(np.float32)
     self.assertTrue(np.allclose(expected, zoomed[key]))
Пример #7
0
 def test_correct_results(self, min_zoom, max_zoom, order, keep_size):
     random_zoom = RandZoom(prob=1.0, min_zoom=min_zoom, max_zoom=max_zoom, interp_order=order, keep_size=keep_size,)
     random_zoom.set_random_state(1234)
     zoomed = random_zoom(self.imt[0])
     expected = list()
     for channel in self.imt[0]:
         expected.append(zoom_scipy(channel, zoom=random_zoom._zoom, mode="nearest", order=0, prefilter=False))
     expected = np.stack(expected).astype(np.float32)
     np.testing.assert_allclose(zoomed, expected, atol=1.0)
Пример #8
0
 def test_correct_results(self, zoom, interp_order):
     zoom_fn = Zoom(zoom=zoom, interp_order=interp_order, keep_size=False)
     zoomed = zoom_fn(self.imt[0])
     _order = 0
     if interp_order.endswith("linear"):
         _order = 1
     expected = list()
     for channel in self.imt[0]:
         expected.append(zoom_scipy(channel, zoom=zoom, mode="nearest", order=_order, prefilter=False))
     expected = np.stack(expected).astype(np.float32)
     np.testing.assert_allclose(zoomed, expected, atol=1.0)
Пример #9
0
 def test_correct_results(self, zoom, mode, keep_size):
     key = "img"
     zoom_fn = Zoomd(key, zoom=zoom, mode=mode, keep_size=keep_size,)
     zoomed = zoom_fn({key: self.imt[0]})
     _order = 0
     if mode.endswith("linear"):
         _order = 1
     expected = list()
     for channel in self.imt[0]:
         expected.append(zoom_scipy(channel, zoom=zoom, mode="nearest", order=_order, prefilter=False))
     expected = np.stack(expected).astype(np.float32)
     np.testing.assert_allclose(expected, zoomed[key], atol=1.0)
Пример #10
0
 def test_correct_results(self, zoom, mode):
     for p in TEST_NDARRAYS:
         zoom_fn = Zoom(zoom=zoom, mode=mode, keep_size=False)
         zoomed = zoom_fn(p(self.imt[0]))
         _order = 0
         if mode.endswith("linear"):
             _order = 1
         expected = []
         for channel in self.imt[0]:
             expected.append(
                 zoom_scipy(channel,
                            zoom=zoom,
                            mode="nearest",
                            order=_order,
                            prefilter=False))
         expected = np.stack(expected).astype(np.float32)
         assert_allclose(zoomed, p(expected), atol=1.0)
Пример #11
0
    def test_correct_results(self, zoom, mode, keep_size):
        key = "img"
        zoom_fn = Zoomd(key, zoom=zoom, mode=mode, keep_size=keep_size)
        for p in TEST_NDARRAYS:
            zoomed = zoom_fn({key: p(self.imt[0])})
            _order = 0
            if mode.endswith("linear"):
                _order = 1
            expected = [
                zoom_scipy(channel,
                           zoom=zoom,
                           mode="nearest",
                           order=_order,
                           prefilter=False) for channel in self.imt[0]
            ]

            expected = np.stack(expected).astype(np.float32)
            assert_allclose(zoomed[key], p(expected), atol=1.0)
Пример #12
0
    def test_correct_results(self, min_zoom, max_zoom, mode, keep_size):
        for p in TEST_NDARRAYS:
            random_zoom = RandZoom(prob=1.0,
                                   min_zoom=min_zoom,
                                   max_zoom=max_zoom,
                                   mode=mode,
                                   keep_size=keep_size)
            random_zoom.set_random_state(1234)
            zoomed = random_zoom(p(self.imt[0]))
            expected = [
                zoom_scipy(channel,
                           zoom=random_zoom._zoom,
                           mode="nearest",
                           order=0,
                           prefilter=False) for channel in self.imt[0]
            ]

            expected = np.stack(expected).astype(np.float32)
            assert_allclose(zoomed, p(expected), atol=1.0)
Пример #13
0
 def test_gpu_zoom(self, _, zoom, order, mode, cval, prefilter):
     if importlib.util.find_spec('cupy'):
         zoom_fn = Zoom(zoom=zoom,
                        order=order,
                        mode=mode,
                        cval=cval,
                        prefilter=prefilter,
                        use_gpu=True,
                        keep_size=False)
         zoomed = zoom_fn(self.imt[0])
         expected = list()
         for channel in self.imt[0]:
             expected.append(
                 zoom_scipy(channel,
                            zoom=zoom,
                            mode=mode,
                            order=order,
                            cval=cval,
                            prefilter=prefilter))
         expected = np.stack(expected).astype(np.float32)
         self.assertTrue(np.allclose(expected, zoomed))