def bfgs_more_gutted(C, u, z, rho, x, n): max_iter = 15000 # fun = MemoizeJac(l2_log) # jac = fun.derivative m = 10 # epsilon = 1e-8 # pgtol = 1e-5 # factr = 1e-7#ftol / np.finfo(float).eps x = x.ravel() # def func_and_grad(x): # f = fun(x, C, z, u, rho, n) # g = jac(x, C, z, u, rho, n) # return f, g nbd = zeros(n, int32) low_bnd = zeros(n, float64) upper_bnd = zeros(n, float64) # x = array(x0, float64) # f = array(0.0, float64) f = 0.0 g = zeros((n,), float64) # wa = zeros(2*m*n + 5*n + 11*m*m + 8*m, float64) wa = zeros(20*n + 5*n + 1180, float64) iwa = zeros(3*n, int32) task = zeros(1, 'S60') csave = zeros(1, 'S60') lsave = zeros(4, int32) isave = zeros(44, int32) dsave = zeros(29, float64) task[:] = 'START' n_iterations = 0 while 1: setulb(m, x, low_bnd, upper_bnd, nbd, f, g, 1e-7, 1e-5, wa, iwa, task, -1, csave, lsave,isave, dsave, 20) #task_str = task.tostring() # if task_str.startswith(b'FG'): task_str = task[0][:2] if task_str == 'FG': # reduce call time put the code here y = x.reshape(n,1) v = sub(add(y,u),z) eCx = exp(dot(C,y)) rhov = rho * v # fobj = umr_sum(log1p(eCx), None, None, None, False) # f = fobj + 0.5 * umr_sum(mul(rhov,v), None, None, None, False) f = umr_sum(log1p(eCx), None, None, None, False) + 0.5 * umr_sum(mul(rhov,v), None, None, None, False) g = dot(C.T, div(eCx, (add(1, eCx)))) + rhov elif task_str == 'NE': # elif task_str.startswith(b'NEW_X'): n_iterations += 1 if n_iterations >= max_iter: return x else: return x
def _smooth_search(self): """Local search implementation using setulb core function """ m = 5 iteration = 0 f = 0 n = self._x.size ndb = np.zeros(self._x.size) ndb.fill(2) iprint = -1 x = np.array(self._xbuffer, np.float64) f = np.array(0.0, np.float64) l = np.array(self._lower, np.float64) u = np.array(self._upper, np.float64) g = np.zeros(n, np.float64) wa = np.zeros(2 * m * n + 5 * n + 11 * m * m + 8 * m, np.float64) iwa = np.zeros(3 * n, np.int32) task = np.zeros(1, 'S60') csave = np.zeros(1, 'S60') lsave = np.zeros(4, np.int32) isave = np.zeros(44, np.int32) dsave = np.zeros(29, np.float64) task[:] = 'START' if self.itsoftmax < 100: self.itsoftmax = 100 elif self.itsoftmax > 1000: self.itsoftmax = 1000 while True: if iteration >= self.itsoftmax: self._xbuffer = np.array(x) self._fvalue = f return _lbfgsb.setulb(m, x, l, u, ndb, f, g, self.factr, self.pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave, 100) iteration += 1 task_str = task.tostring() if task_str.startswith(b'FG'): self._xbuffer = np.array(x) f = self._fobjective(self._xbuffer) if self.know_real: if f <= self.real_threshold: self._xbuffer = np.array(x) self._fvalue = f return g = np.array(self._compute_gradient(x), np.float64) elif task_str.startswith(b'NEW_X'): pass else: self._fvalue = f self._xbuffer = np.array(x) return
def test_setulb_floatround(): """test if setulb() violates bounds checks for violation due to floating point rounding error """ n = 5 m = 10 factr = 1e7 pgtol = 1e-5 maxls = 20 iprint = -1 nbd = np.full((n, ), 2) low_bnd = np.zeros(n, np.float64) upper_bnd = np.ones(n, np.float64) x0 = np.array([ 0.8750000000000278, 0.7500000000000153, 0.9499999999999722, 0.8214285714285992, 0.6363636363636085 ]) x = np.copy(x0) f = np.array(0.0, np.float64) g = np.zeros(n, np.float64) fortran_int = _lbfgsb.types.intvar.dtype wa = np.zeros(2 * m * n + 5 * n + 11 * m * m + 8 * m, np.float64) iwa = np.zeros(3 * n, fortran_int) task = np.zeros(1, 'S60') csave = np.zeros(1, 'S60') lsave = np.zeros(4, fortran_int) isave = np.zeros(44, fortran_int) dsave = np.zeros(29, np.float64) task[:] = b'START' for n_iter in range(7): # 7 steps required to reproduce error f, g = objfun(x) _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave, maxls) assert (x <= upper_bnd).all() and (x >= low_bnd).all(), ( "_lbfgsb.setulb() stepped to a point outside of the bounds")
def bfgs_more_gutted(C, u, z, rho, x, n): #max_iter = 15000 max_iter = 3000 nbd = zeros(n, int32) low_bnd = zeros(n, float64) upper_bnd = zeros(n, float64) x = array(x, float64) f = 0.0 g = zeros((n, ), float64) wa = zeros(20 * n + 5 * n + 1180, float64) iwa = zeros(3 * n, int32) task = zeros(1, 'S60') csave = zeros(1, 'S60') lsave = zeros(4, int32) isave = zeros(44, int32) dsave = zeros(29, float64) task[:] = 'START' n_iterations = 0 while 1: setulb(10, x, low_bnd, upper_bnd, nbd, f, g, 1e7, 1e-5, wa, iwa, task, -1, csave, lsave, isave, dsave, 20) task_str = task.tostring() if task_str.startswith(b'FG'): v = sub(add(x, u), z) eCx = exp(dot(C, x)) rhov = rho * v f = umr_sum(log1p(eCx), None, None, None, False) + 0.5 * umr_sum( mul(rhov, v), None, None, None, False) g = dot(C.T, div(eCx, (add(1, eCx)))) + rhov elif task_str.startswith(b'NE'): n_iterations += 1 if n_iterations >= max_iter: return x else: return x
def fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=1e7, pgtol=1e-5, epsilon=1e-8, iprint=-1, maxfun=15000, callback = None, maxstep=0.2, scale_steps=True): # added for AOF """ Minimize a function func using the L-BFGS-B algorithm. Arguments: func -- function to minimize. Called as func(x, *args) x0 -- initial guess to minimum fprime -- gradient of func. If None, then func returns the function value and the gradient ( f, g = func(x, *args) ), unless approx_grad is True then func returns only f. Called as fprime(x, *args) args -- arguments to pass to function approx_grad -- if true, approximate the gradient numerically and func returns only function value. bounds -- a list of (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction m -- the maximum number of variable metric corrections used to define the limited memory matrix. (the limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it). factr -- The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch where epsmch is the machine precision, which is automatically generated by the code. Typical values for factr: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. pgtol -- The iteration will stop when max{|proj g_i | i = 1, ..., n} <= pgtol where pg_i is the ith component of the projected gradient. epsilon -- step size used when approx_grad is true, for numerically calculating the gradient iprint -- controls the frequency of output. <0 means no output. maxfun -- maximum number of function evaluations. Returns: x, f, d = fmin_lbfgs_b(func, x0, ...) x -- position of the minimum f -- value of func at the minimum d -- dictionary of information from routine d['warnflag'] is 0 if converged, 1 if too many function evaluations, 2 if stopped for another reason, given in d['task'] d['grad'] is the gradient at the minimum (should be 0 ish) d['funcalls'] is the number of function calls made. License of L-BFGS-B (Fortran code) ================================== The version included here (in fortran code) is 2.1 (released in 1997). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <*****@*****.**>. It carries the following condition for use: This software is freely available, but we expect that all publications describing work using this software , or all commercial products using it, quote at least one of the references given below. References * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208. * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550 - 560. See also: scikits.openopt, which offers a unified syntax to call this and other solvers fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg -- multivariate local optimizers leastsq -- nonlinear least squares minimizer fmin_l_bfgs_b, fmin_tnc, fmin_cobyla -- constrained multivariate optimizers anneal, brute -- global optimizers fminbound, brent, golden, bracket -- local scalar minimizers fsolve -- n-dimenstional root-finding brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding fixed_point -- scalar fixed-point finder """ n = len(x0) if bounds is None: bounds = [(None,None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') if approx_grad: def func_and_grad(x): f = func(x, *args) g = approx_fprime(x, func, epsilon, *args) return f, g elif fprime is None: def func_and_grad(x): f, g = func(x, *args) return f, g else: def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g nbd = zeros((n,), int32) low_bnd = zeros((n,), float64) upper_bnd = zeros((n,), float64) bounds_map = {(None, None): 0, (1, None) : 1, (1, 1) : 2, (None, 1) : 3} for i in range(0, n): l,u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] x = array(x0, float64) f = array(0.0, float64) g = zeros((n,), float64) wa = zeros((2*m*n+4*n + 12*m**2 + 12*m,), float64) iwa = zeros((3*n,), int32) task = zeros(1, 'S60') csave = zeros(1,'S60') lsave = zeros((4,), int32) isave = zeros((44,), int32) dsave = zeros((29,), float64) task[:] = 'START' global n_function_evals n_function_evals = 0 while 1: prevx = x.copy() # see http://www.math.unm.edu/~vageli/courses/Ma579/lbfgsb.f _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave) # scale step size, added for AOF # A question that one might ask is: if the steps are always scaled, # even during the line search, wont this cause problems if points on # the line search are co-linear. The answer is: that subsequent steps # in the line search, as generated by setulb(), never seem to be # co-linear. if scale_steps: step = x - prevx size = sqrt(dot(step, step)) #print "step size",size if size > maxstep: #print "*********** scaling step size" step = step / size * maxstep x = prevx + step task_str = task.tostring() #print "task_str",task_str if task_str.startswith('FG'): # minimization routine wants f and g at the current x n_function_evals += 1 # Overwrite f and g: #print "step x", str(x) f, g = func_and_grad(x) # print "Line searching, current f =", f elif task_str.startswith('NEW_X'): # added for aOF print "g_max", g.max(), "pgtol", pgtol #print "n_function_evals",n_function_evals if callable(callback): callback(x) # new iteration if n_function_evals > maxfun: task[:] = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' else: break task_str = task.tostring().strip('\x00').strip() if task_str.startswith('CONV'): warnflag = 0 elif n_function_evals > maxfun: warnflag = 1 else: warnflag = 2 d = {'grad' : g, 'task' : task_str, 'funcalls' : n_function_evals, 'warnflag' : warnflag } return x, f, d
def lbfgsb(func, x0, bounds=None, m=10, factr=1e7, pgtol=1e-5, maxfun=100): """ Minimize a function func using the L-BFGS-B algorithm. Arguments: func -- function to minimize. Called as func(x, *args) x0 -- initial guess to minimum bounds -- a list of (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction m -- the maximum number of variable metric corrections used to define the limited memory matrix. (the limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it). factr -- The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch where epsmch is the machine precision, which is automatically generated by the code. Typical values for factr: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. pgtol -- The iteration will stop when max{|proj g_i | i = 1, ..., n} <= pgtol where pg_i is the ith component of the projected gradient. maxfun -- maximum number of function evaluations. License of L-BFGS-B (Fortran code) ================================== The version included here (in fortran code) is 2.1 (released in 1997). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <*****@*****.**>. It carries the following condition for use: This software is freely available, but we expect that all publications describing work using this software , or all commercial products using it, quote at least one of the references given below. References * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208. * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550 - 560. """ n = len(x0) if bounds is None: bounds = [(None,None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') nbd = np.zeros((n,), np.int32) low_bnd = np.zeros((n,), np.float64) upper_bnd = np.zeros((n,), np.float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): l,u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] wa = np.zeros((2*m*n + 4*n + 12*m**2 + 12*m,), np.float64) iwa = np.zeros((3*n,), np.int32) task = np.zeros(1, 'S60') csave = np.zeros(1, 'S60') lsave = np.zeros((4, ), np.int32) isave = np.zeros((44,), np.int32) dsave = np.zeros((29,), np.float64) # allocate space for our path. ns = np.empty(maxfun+1, np.int32) xs = np.empty((maxfun+1, n), np.float64) fs = np.empty(maxfun+1, np.float64) gs = np.empty((maxfun+1, n), np.float64) # initialize the first step. x = np.array(x0, np.float64) f, g = func(x) ns[0], xs[0], fs[0], gs[0] = 0, x, f, g i = 1 numevals = 0 task[:] = 'START' while 1: _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, -1, csave, lsave, isave, dsave) task_str = task.tostring() if task_str.startswith('FG'): # minimization routine wants f and g at the current x numevals += 1 f, g = func(x) elif task_str.startswith('NEW_X'): # new iteration ns[i], xs[i], fs[i], gs[i] = numevals, x, f, g i += 1 if numevals > maxfun: task[:] = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' else: break ns.resize(i) xs.resize((i, n)) fs.resize(i) gs.resize((i, n)) return x, f, dict(numevals=ns, x=xs, f=fs, g=gs)
def _minimize_lbfgsb_timeup( fun, x0, args=(), jac=None, bounds=None, disp=None, maxcor=10, ftol=2.2204460492503131e-09, gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000, iprint=-1, callback=None, maxls=20, t0=None, timeup=float("inf"), **unknown_options): # JFF: added time-up check """ Minimize a scalar function of one or more variables using the L-BFGS-B algorithm. Options ------- disp : bool Set to True to print convergence messages. maxcor : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) factr : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``, where ``eps`` is the machine precision, which is automatically generated by the code. Typical values for `factr` are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. ftol : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``. gtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= gtol`` where ``pg_i`` is the i-th component of the projected gradient. eps : float Step size used for numerical approximation of the jacobian. disp : int Set to True to print convergence messages. maxfun : int Maximum number of function evaluations. maxiter : int Maximum number of iterations. maxls : int, optional Maximum number of line search steps (per iteration). Default is 20. """ _check_unknown_options(unknown_options) m = maxcor epsilon = eps pgtol = gtol factr = ftol / np.finfo(float).eps x0 = asarray(x0).ravel() n, = x0.shape if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') # unbounded variables must use None, not +-inf, for optimizer to work properly bounds = [(None if l == -np.inf else l, None if u == np.inf else u) for l, u in bounds] if disp is not None: if disp == 0: iprint = -1 else: iprint = disp n_function_evals, fun = wrap_function(fun, ()) if jac is None: def func_and_grad(x): f = fun(x, *args) g = _approx_fprime_helper(x, fun, epsilon, args=args, f0=f) return f, g else: def func_and_grad(x): f = fun(x, *args) g = jac(x, *args) return f, g nbd = zeros(n, int32) low_bnd = zeros(n, float64) upper_bnd = zeros(n, float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): l, u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] if not maxls > 0: raise ValueError('maxls must be positive.') x = array(x0, float64) f = array(0.0, float64) g = zeros((n,), float64) wa = zeros(2*m*n + 5*n + 11*m*m + 8*m, float64) iwa = zeros(3*n, int32) task = zeros(1, 'S60') csave = zeros(1, 'S60') lsave = zeros(4, int32) isave = zeros(44, int32) dsave = zeros(29, float64) task[:] = 'START' n_iterations = 0 if t0 is None: t0 = time.time() time_profile.predicted_inner_loop_func2_duration = 0.0 while 1: # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \ _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave, maxls) task_str = task.tostring() # begin EB curr_time = time.time() predicted_inner_loop_func2_duration = (curr_time + time_profile.maximize_inner_time_profile.mean + time_profile.func2_time_profile.mean - t0) if predicted_inner_loop_func2_duration > timeup: # JFF: added time-up check task[:] = ('STOP: PREDICTED COMPUTATION TIME EXCEEDS LIMIT') break # end EB if task_str.startswith(b'FG'): # The minimization routine wants f and g at the current x. # Note that interruptions due to maxfun are postponed # until the completion of the current minimization iteration. # Overwrite f and g: f, g = func_and_grad(x) elif task_str.startswith(b'NEW_X'): # new iteration if n_iterations > maxiter: task[:] = 'STOP: TOTAL NO. of ITERATIONS EXCEEDS LIMIT' elif n_function_evals[0] > maxfun: task[:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS ' 'EXCEEDS LIMIT') else: n_iterations += 1 if callback is not None: callback(x) else: break time_profile.predicted_inner_loop_func2_duration = predicted_inner_loop_func2_duration task_str = task.tostring().strip(b'\x00').strip() if task_str.startswith(b'CONV'): warnflag = 0 elif n_function_evals[0] > maxfun: warnflag = 1 elif n_iterations > maxiter: warnflag = 1 else: warnflag = 2 # These two portions of the workspace are described in the mainlb # subroutine in lbfgsb.f. See line 363. s = wa[0: m*n].reshape(m, n) y = wa[m*n: 2*m*n].reshape(m, n) # See lbfgsb.f line 160 for this portion of the workspace. # isave(31) = the total number of BFGS updates prior the current iteration; n_bfgs_updates = isave[30] n_corrs = min(n_bfgs_updates, maxcor) hess_inv = LbfgsInvHessProduct(s[:n_corrs], y[:n_corrs]) return OptimizeResult(fun=f, jac=g, nfev=n_function_evals[0], nit=n_iterations, status=warnflag, message=task_str, x=x, success=(warnflag == 0), hess_inv=hess_inv)
def lbfgsb(func, x0, bounds=None, m=10, factr=1e7, pgtol=1e-5, maxfun=100): """ Minimize a function func using the L-BFGS-B algorithm. Arguments: func -- function to minimize. Called as func(x, *args) x0 -- initial guess to minimum bounds -- a list of (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction m -- the maximum number of variable metric corrections used to define the limited memory matrix. (the limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it). factr -- The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch where epsmch is the machine precision, which is automatically generated by the code. Typical values for factr: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. pgtol -- The iteration will stop when max{|proj g_i | i = 1, ..., n} <= pgtol where pg_i is the ith component of the projected gradient. maxfun -- maximum number of function evaluations. License of L-BFGS-B (Fortran code) ================================== The version included here (in fortran code) is 2.1 (released in 1997). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <*****@*****.**>. It carries the following condition for use: This software is freely available, but we expect that all publications describing work using this software , or all commercial products using it, quote at least one of the references given below. References * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208. * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550 - 560. """ n = len(x0) if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') nbd = np.zeros((n, ), np.int32) low_bnd = np.zeros((n, ), np.float64) upper_bnd = np.zeros((n, ), np.float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): l, u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] wa = np.zeros((2 * m * n + 4 * n + 12 * m**2 + 12 * m, ), np.float64) iwa = np.zeros((3 * n, ), np.int32) task = np.zeros(1, 'S60') csave = np.zeros(1, 'S60') lsave = np.zeros((4, ), np.int32) isave = np.zeros((44, ), np.int32) dsave = np.zeros((29, ), np.float64) # allocate space for our path. ns = np.empty(maxfun + 1, np.int32) xs = np.empty((maxfun + 1, n), np.float64) fs = np.empty(maxfun + 1, np.float64) gs = np.empty((maxfun + 1, n), np.float64) # initialize the first step. x = np.array(x0, np.float64) f, g = func(x) ns[0], xs[0], fs[0], gs[0] = 0, x, f, g i = 1 numevals = 0 task[:] = 'START' while 1: _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, -1, csave, lsave, isave, dsave) task_str = task.tostring() if task_str.startswith('FG'): # minimization routine wants f and g at the current x numevals += 1 f, g = func(x) elif task_str.startswith('NEW_X'): # new iteration ns[i], xs[i], fs[i], gs[i] = numevals, x, f, g i += 1 if numevals > maxfun: task[:] = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' else: break ns.resize(i) xs.resize((i, n)) fs.resize(i) gs.resize((i, n)) return x, f, dict(numevals=ns, x=xs, f=fs, g=gs)
def batched_fmin_lbfgs_b(func, x0, num_batches, fprime=None, args=(), bounds=None, m=10, factr=1e7, pgtol=1e-5, epsilon=1e-8, iprint=-1, maxiter=15000, maxls=20): """A batch-aware L-BFGS-B implementation to minimize a loss function `f` given an initial set of parameters `x0`. Parameters ---------- func : function (x: array) -> array[M] (M = n_batches) The function to minimize. The function should return an array of size = `num_batches` x0 : array Starting parameters fprime : function (x: array) -> array[M*n_params] (optional) The gradient. Should return an array of derivatives for each parameter over batches. When omitted, uses Finite-differencing to estimate the gradient. args : Tuple Additional arguments to func and fprime bounds : List[Tuple[float, float]] Box-constrains on the parameters m : int L-BFGS parameter: number of previous arrays to store when estimating inverse Hessian. factr : float Stopping criterion when function evaluation not progressing. Stop when `|f(xk+1) - f(xk)| < factor*eps_mach` where `eps_mach` is the machine precision pgtol : float Stopping criterion when gradient is sufficiently "flat". Stop when |grad| < pgtol. epsilon : float Finite differencing step size when approximating `fprime` iprint : int -1 for no diagnostic info n=1-100 for diagnostic info every n steps. >100 for detailed diagnostic info maxiter : int Maximum number of L-BFGS iterations maxls : int Maximum number of line-search iterations. """ if has_scipy(): from scipy.optimize import _lbfgsb else: raise RuntimeError("Scipy is needed to run batched_fmin_lbfgs_b") nvtx_range_push("LBFGS") n = len(x0) // num_batches if fprime is None: def fprime_f(x): return _fd_fprime(x, func, epsilon) fprime = fprime_f if bounds is None: bounds = [(None, None)] * n nbd = np.zeros(n, np.int32) low_bnd = np.zeros(n, np.float64) upper_bnd = np.zeros(n, np.float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): lb, ub = bounds[i] if lb is not None: low_bnd[i] = lb lb = 1 if ub is not None: upper_bnd[i] = ub ub = 1 nbd[i] = bounds_map[lb, ub] # working arrays needed by L-BFGS-B implementation in SciPy. # One for each series x = [np.copy(np.array(x0[ib*n:(ib+1)*n], np.float64)) for ib in range(num_batches)] f = [np.copy(np.array(0.0, np.float64)) for ib in range(num_batches)] g = [np.copy(np.zeros((n,), np.float64)) for ib in range(num_batches)] wa = [np.copy(np.zeros(2*m*n + 5*n + 11*m*m + 8*m, np.float64)) for ib in range(num_batches)] iwa = [np.copy(np.zeros(3*n, np.int32)) for ib in range(num_batches)] task = [np.copy(np.zeros(1, 'S60')) for ib in range(num_batches)] csave = [np.copy(np.zeros(1, 'S60')) for ib in range(num_batches)] lsave = [np.copy(np.zeros(4, np.int32)) for ib in range(num_batches)] isave = [np.copy(np.zeros(44, np.int32)) for ib in range(num_batches)] dsave = [np.copy(np.zeros(29, np.float64)) for ib in range(num_batches)] for ib in range(num_batches): task[ib][:] = 'START' n_iterations = np.zeros(num_batches, dtype=np.int32) converged = num_batches * [False] warn_flag = np.zeros(num_batches) while not all(converged): nvtx_range_push("LBFGS-ITERATION") for ib in range(num_batches): if converged[ib]: continue _lbfgsb.setulb(m, x[ib], low_bnd, upper_bnd, nbd, f[ib], g[ib], factr, pgtol, wa[ib], iwa[ib], task[ib], iprint, csave[ib], lsave[ib], isave[ib], dsave[ib], maxls) xk = np.concatenate(x) fk = func(xk) gk = fprime(xk) for ib in range(num_batches): if converged[ib]: continue task_str = task[ib].tostring() task_str_strip = task[ib].tostring().strip(b'\x00').strip() if task_str.startswith(b'FG'): # needs function evalation f[ib] = fk[ib] g[ib] = gk[ib*n:(ib+1)*n] elif task_str.startswith(b'NEW_X'): n_iterations[ib] += 1 if n_iterations[ib] >= maxiter: task[ib][:] = 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT' elif task_str_strip.startswith(b'CONV'): converged[ib] = True warn_flag[ib] = 0 else: converged[ib] = True warn_flag[ib] = 2 continue nvtx_range_pop() xk = np.concatenate(x) if iprint > 0: print("CONVERGED in ({}-{}) iterations (|\\/f|={})".format( np.min(n_iterations), np.max(n_iterations), np.linalg.norm(fprime(xk), np.inf))) if (warn_flag > 0).any(): for ib in range(num_batches): if warn_flag[ib] > 0: print("WARNING: id={} convergence issue: {}".format( ib, task[ib].tostring())) nvtx_range_pop() return xk, n_iterations, warn_flag
def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None, disp=None, maxcor=10, ftol=2.2204460492503131e-09, gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000, maxtime=0, iprint=-1, callback=None, **unknown_options): """ Minimize a scalar function of one or more variables using the L-BFGS-B algorithm. Options for the L-BFGS-B algorithm are: disp : bool Set to True to print convergence messages. maxcor : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) factr : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``, where ``eps`` is the machine precision, which is automatically generated by the code. Typical values for `factr` are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. gtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= gtol`` where ``pg_i`` is the i-th component of the projected gradient. eps : float Step size used for numerical approximation of the jacobian. disp : int Set to True to print convergence messages. maxfun : int Maximum number of function evaluations. maxiter : int Maximum number of iterations. This function is called by the `minimize` function with `method=L-BFGS-B`. It is not supposed to be called directly. """ _check_unknown_options(unknown_options) m = maxcor epsilon = eps pgtol = gtol factr = ftol / np.finfo(float).eps x0 = asarray(x0).ravel() n, = x0.shape if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') if disp is not None: if disp == 0: iprint = -1 else: iprint = disp if jac is None: def func_and_grad(x): f = fun(x, *args) g = approx_fprime(x, fun, epsilon, *args) return f, g else: def func_and_grad(x): f = fun(x, *args) g = jac(x, *args) return f, g nbd = zeros(n, int32) low_bnd = zeros(n, float64) upper_bnd = zeros(n, float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): l, u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] x = array(x0, float64) f = array(0.0, float64) g = zeros((n, ), float64) wa = zeros(2 * m * n + 5 * n + 11 * m * m + 8 * m, float64) iwa = zeros(3 * n, int32) task = zeros(1, 'S60') csave = zeros(1, 'S60') lsave = zeros(4, int32) isave = zeros(44, int32) dsave = zeros(29, float64) task[:] = 'START' n_function_evals = 0 n_iterations = 0 start_time = time.clock() while 1: # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \ _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave) task_str = task.tostring() if task_str.startswith(asbytes('FG')): if n_function_evals > maxfun: task[:] = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' else: # minimization routine wants f and g at the current x n_function_evals += 1 # Overwrite f and g: f, g = func_and_grad(x) elif task_str.startswith(asbytes('NEW_X')): # new iteration if n_iterations > maxiter: task[:] = 'STOP: TOTAL NO. of ITERATIONS EXCEEDS LIMIT' elif (maxtime > 0) and ((time.clock() - start_time) > maxtime): task[:] = 'STOP: TOTAL TIME EXCEEDS LIMIT' else: n_iterations += 1 if callback is not None: callback(x) else: break task_str = task.tostring().strip(asbytes('\x00')).strip() if task_str.startswith(asbytes('CONV')): warnflag = 0 elif n_function_evals > maxfun: warnflag = 1 elif n_iterations > maxiter: warnflag = 1 else: warnflag = 2 return Result(fun=f, jac=g, nfev=n_function_evals, nit=n_iterations, status=warnflag, message=task_str, x=x, success=(warnflag == 0))
def _minimize_lbfgsb_multi(fun, x0, args=(), jac=None, bounds=None, disp=None, maxcor=10, ftol=2.2204460492503131e-09, gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000, iprint=-1, callback=None, maxls=20, **unknown_options): """ Minimize a scalar function of one or more variables using the L-BFGS-B algorithm. Options ------- disp : bool Set to True to print convergence messages. maxcor : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) ftol : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= ftol``. gtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= gtol`` where ``pg_i`` is the i-th component of the projected gradient. eps : float Step size used for numerical approximation of the jacobian. disp : int Set to True to print convergence messages. maxfun : int Maximum number of function evaluations. maxiter : int Maximum number of iterations. maxls : int, optional Maximum number of line search steps (per iteration). Default is 20. Notes ----- The option `ftol` is exposed via the `scipy.optimize.minimize` interface, but calling `scipy.optimize.fmin_l_bfgs_b` directly exposes `factr`. The relationship between the two is ``ftol = factr * numpy.finfo(float).eps``. I.e., `factr` multiplies the default machine floating-point precision to arrive at `ftol`. """ _check_unknown_options(unknown_options) m = maxcor epsilon = eps pgtol = gtol factr = ftol / np.finfo(float).eps k,n = x0.shape # x0 = [asarray(x).ravel() for x in x0] # n, = x0.shape if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') # unbounded variables must use None, not +-inf, for optimizer to work properly bounds = [(None if l == -np.inf else l, None if u == np.inf else u) for l, u in bounds] if disp is not None: if disp == 0: iprint = -1 else: iprint = disp if jac is None: def func_and_grad(x): # f = fun(x, *args) f, g = _approx_fprime_helper(x, fun, epsilon, args=args) return f, g else: def func_and_grad(x): f = fun(x, *args) g = jac(x, *args) return f, g nbd = zeros(n, int32) low_bnd = zeros(n, float64) upper_bnd = zeros(n, float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): l, u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] if not maxls > 0: raise ValueError('maxls must be positive.') # x = [array(x0_, float64) for x0_ in x0] X = x0.copy() f = [array(0.0, float64) for _ in range(k)] g = [zeros((n,), float64) for _ in range(k)] wa = [zeros(2*m*n + 5*n + 11*m*m + 8*m, float64) for _ in range(k)] iwa = [zeros(3*n, int32) for _ in range(k)] task = [zeros(1, 'S60') for _ in range(k)] csave = [zeros(1, 'S60') for _ in range(k)] lsave = [zeros(4, int32) for _ in range(k)] isave = [zeros(44, int32) for _ in range(k)] dsave = [zeros(29, float64) for _ in range(k)] n_function_evals = 0 for i in range(k): task[i][:] = 'START' n_iterations = [0 for _ in range(k)] k_running = [i for i in range(k)] while 1: # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \ request_index = [] # run all instance until they request a new point # X contains only points for the remaining instances for i in k_running: while 1: _lbfgsb.setulb(m, X[i], low_bnd, upper_bnd, nbd, f[i], g[i], factr, pgtol, wa[i], iwa[i], task[i], iprint, csave[i], lsave[i], isave[i], dsave[i], maxls) task_str = task[i].tostring() if task_str.startswith(b'FG'): # The minimization routine wants f and g at the current x. # Note that interruptions due to maxfun are postponed # until the completion of the current minimization iteration. # Overwrite f and g: request_index.append(i) break elif task_str.startswith(b'NEW_X'): # new iteration if n_iterations[i] > maxiter: task[i][:] = 'STOP: TOTAL NO. of ITERATIONS EXCEEDS LIMIT' # break elif n_function_evals > maxfun: task[i][:] = ('STOP: TOTAL NO. of f AND g EVALUATIONS ' 'EXCEEDS LIMIT') # break else: n_iterations[i] += 1 # if callback is not None: # callback(x) else: break k_running = request_index if len(k_running) == 0: break F,G = func_and_grad(X[request_index]) n_function_evals += 1 for ff,gg,i in zip(F,G,k_running): f[i] = ff g[i] = gg warnflag = [] task_str = [t.tostring().strip(b'\x00').strip() for t in task] for i,t in enumerate(task_str): if t.startswith(b'CONV'): warnflag.append(0) elif n_function_evals > maxfun: warnflag.append(1) elif n_iterations[i] > maxiter: warnflag.append(2) else: warnflag.append(3) # These two portions of the workspace are described in the mainlb # subroutine in lbfgsb.f. See line 363. # s = [wa[i][0: m*n].reshape(m, n) for i in range(k)] # y = [wa[i][m*n: 2*m*n].reshape(m, n) for i in range(k)] # See lbfgsb.f line 160 for this portion of the workspace. # isave(31) = the total number of BFGS updates prior the current iteration; # n_bfgs_updates = isave[30] # n_corrs = min(n_bfgs_updates, maxcor) # hess_inv = LbfgsInvHessProduct(s[:n_corrs], y[:n_corrs]) return OptimizeResult(fun=f, jac=g, nfev=n_function_evals, nit=n_iterations, status=warnflag, message=task_str, x=X, success=(sum(warnflag) == 0))
def _minimize_lbfgsb(fun, x0, args=(), jac=None, bounds=None, disp=None, maxcor=10, ftol=2.2204460492503131e-09, gtol=1e-5, eps=1e-8, maxfun=15000, maxiter=15000, maxtime=0, iprint=-1, callback=None, **unknown_options): """ Minimize a scalar function of one or more variables using the L-BFGS-B algorithm. Options for the L-BFGS-B algorithm are: disp : bool Set to True to print convergence messages. maxcor : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) factr : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``, where ``eps`` is the machine precision, which is automatically generated by the code. Typical values for `factr` are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. gtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= gtol`` where ``pg_i`` is the i-th component of the projected gradient. eps : float Step size used for numerical approximation of the jacobian. disp : int Set to True to print convergence messages. maxfun : int Maximum number of function evaluations. maxiter : int Maximum number of iterations. This function is called by the `minimize` function with `method=L-BFGS-B`. It is not supposed to be called directly. """ _check_unknown_options(unknown_options) m = maxcor epsilon = eps pgtol = gtol factr = ftol / np.finfo(float).eps x0 = asarray(x0).ravel() n, = x0.shape if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') if disp is not None: if disp == 0: iprint = -1 else: iprint = disp if jac is None: def func_and_grad(x): f = fun(x, *args) g = approx_fprime(x, fun, epsilon, *args) return f, g else: def func_and_grad(x): f = fun(x, *args) g = jac(x, *args) return f, g nbd = zeros(n, int32) low_bnd = zeros(n, float64) upper_bnd = zeros(n, float64) bounds_map = { (None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3 } for i in range(0, n): l, u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] x = array(x0, float64) f = array(0.0, float64) g = zeros((n,), float64) wa = zeros(2 * m * n + 5 * n + 11 * m * m + 8 * m, float64) iwa = zeros(3 * n, int32) task = zeros(1, 'S60') csave = zeros(1, 'S60') lsave = zeros(4, int32) isave = zeros(44, int32) dsave = zeros(29, float64) task[:] = 'START' n_function_evals = 0 n_iterations = 0 start_time = time.clock() while 1: # x, f, g, wa, iwa, task, csave, lsave, isave, dsave = \ _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave) task_str = task.tostring() if task_str.startswith(asbytes('FG')): if n_function_evals > maxfun: task[ :] = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' else: # minimization routine wants f and g at the current x n_function_evals += 1 # Overwrite f and g: f, g = func_and_grad(x) elif task_str.startswith(asbytes('NEW_X')): # new iteration if n_iterations > maxiter: task[:] = 'STOP: TOTAL NO. of ITERATIONS EXCEEDS LIMIT' elif (maxtime > 0) and ((time.clock() - start_time) > maxtime): task[:] = 'STOP: TOTAL TIME EXCEEDS LIMIT' else: n_iterations += 1 if callback is not None: callback(x) else: break task_str = task.tostring().strip(asbytes('\x00')).strip() if task_str.startswith(asbytes('CONV')): warnflag = 0 elif n_function_evals > maxfun: warnflag = 1 elif n_iterations > maxiter: warnflag = 1 else: warnflag = 2 return Result(fun=f, jac=g, nfev=n_function_evals, nit=n_iterations, status=warnflag, message=task_str, x=x, success=(warnflag == 0))
def fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=1e7, pgtol=1e-5, epsilon=1e-8, iprint=-1, maxfun=15000, callback=None, maxstep=0.2, scale_steps=True): # added for AOF """ Minimize a function func using the L-BFGS-B algorithm. Arguments: func -- function to minimize. Called as func(x, *args) x0 -- initial guess to minimum fprime -- gradient of func. If None, then func returns the function value and the gradient ( f, g = func(x, *args) ), unless approx_grad is True then func returns only f. Called as fprime(x, *args) args -- arguments to pass to function approx_grad -- if true, approximate the gradient numerically and func returns only function value. bounds -- a list of (min, max) pairs for each element in x, defining the bounds on that parameter. Use None for one of min or max when there is no bound in that direction m -- the maximum number of variable metric corrections used to define the limited memory matrix. (the limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it). factr -- The iteration stops when (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch where epsmch is the machine precision, which is automatically generated by the code. Typical values for factr: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. pgtol -- The iteration will stop when max{|proj g_i | i = 1, ..., n} <= pgtol where pg_i is the ith component of the projected gradient. epsilon -- step size used when approx_grad is true, for numerically calculating the gradient iprint -- controls the frequency of output. <0 means no output. maxfun -- maximum number of function evaluations. Returns: x, f, d = fmin_lbfgs_b(func, x0, ...) x -- position of the minimum f -- value of func at the minimum d -- dictionary of information from routine d['warnflag'] is 0 if converged, 1 if too many function evaluations, 2 if stopped for another reason, given in d['task'] d['grad'] is the gradient at the minimum (should be 0 ish) d['funcalls'] is the number of function calls made. License of L-BFGS-B (Fortran code) ================================== The version included here (in fortran code) is 2.1 (released in 1997). It was written by Ciyou Zhu, Richard Byrd, and Jorge Nocedal <*****@*****.**>. It carries the following condition for use: This software is freely available, but we expect that all publications describing work using this software , or all commercial products using it, quote at least one of the references given below. References * R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208. * C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550 - 560. See also: scikits.openopt, which offers a unified syntax to call this and other solvers fmin, fmin_powell, fmin_cg, fmin_bfgs, fmin_ncg -- multivariate local optimizers leastsq -- nonlinear least squares minimizer fmin_l_bfgs_b, fmin_tnc, fmin_cobyla -- constrained multivariate optimizers anneal, brute -- global optimizers fminbound, brent, golden, bracket -- local scalar minimizers fsolve -- n-dimenstional root-finding brentq, brenth, ridder, bisect, newton -- one-dimensional root-finding fixed_point -- scalar fixed-point finder """ n = len(x0) if bounds is None: bounds = [(None, None)] * n if len(bounds) != n: raise ValueError('length of x0 != length of bounds') if approx_grad: def func_and_grad(x): f = func(x, *args) g = approx_fprime(x, func, epsilon, *args) return f, g elif fprime is None: def func_and_grad(x): f, g = func(x, *args) return f, g else: def func_and_grad(x): f = func(x, *args) g = fprime(x, *args) return f, g nbd = zeros((n, ), int32) low_bnd = zeros((n, ), float64) upper_bnd = zeros((n, ), float64) bounds_map = {(None, None): 0, (1, None): 1, (1, 1): 2, (None, 1): 3} for i in range(0, n): l, u = bounds[i] if l is not None: low_bnd[i] = l l = 1 if u is not None: upper_bnd[i] = u u = 1 nbd[i] = bounds_map[l, u] x = array(x0, float64) f = array(0.0, float64) g = zeros((n, ), float64) wa = zeros((2 * m * n + 4 * n + 12 * m**2 + 12 * m, ), float64) iwa = zeros((3 * n, ), int32) task = zeros(1, 'S60') csave = zeros(1, 'S60') lsave = zeros((4, ), int32) isave = zeros((44, ), int32) dsave = zeros((29, ), float64) task[:] = 'START' global n_function_evals n_function_evals = 0 while 1: prevx = x.copy() # see http://www.math.unm.edu/~vageli/courses/Ma579/lbfgsb.f _lbfgsb.setulb(m, x, low_bnd, upper_bnd, nbd, f, g, factr, pgtol, wa, iwa, task, iprint, csave, lsave, isave, dsave) # scale step size, added for AOF # A question that one might ask is: if the steps are always scaled, # even during the line search, wont this cause problems if points on # the line search are co-linear. The answer is: that subsequent steps # in the line search, as generated by setulb(), never seem to be # co-linear. if scale_steps: step = x - prevx size = sqrt(dot(step, step)) #print "step size",size if size > maxstep: #print "*********** scaling step size" step = step / size * maxstep x = prevx + step task_str = task.tostring() #print "task_str",task_str if task_str.startswith('FG'): # minimization routine wants f and g at the current x n_function_evals += 1 # Overwrite f and g: #print "step x", str(x) f, g = func_and_grad(x) # print "Line searching, current f =", f elif task_str.startswith('NEW_X'): # added for aOF print "g_max", g.max(), "pgtol", pgtol #print "n_function_evals",n_function_evals if callable(callback): callback(x) # new iteration if n_function_evals > maxfun: task[:] = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIMIT' else: break task_str = task.tostring().strip('\x00').strip() if task_str.startswith('CONV'): warnflag = 0 elif n_function_evals > maxfun: warnflag = 1 else: warnflag = 2 d = { 'grad': g, 'task': task_str, 'funcalls': n_function_evals, 'warnflag': warnflag } return x, f, d