Пример #1
0
 def result(self):
     """ The OptimizeResult """
     res = OptimizeResult()
     res.x = self._xmin
     res.fun = self._fvalue
     res.message = self._message
     res.nit = self._step_record
     return res
Пример #2
0
 def result(self):
     """ The OptimizeResult """
     res = OptimizeResult()
     res.x = self._xmin
     res.fun = self._fvalue
     res.message = self._message
     res.nit = self._step_record
     return res
Пример #3
0
def get_optimization_results(t, N, factors, taskset):
    K = len(factors)
    results = []
    for k in range(K):
        factor = factors[k]
        result         = OptimizeResult()
        result.x       = deepcopy(factor.theta)
        result.fun     = factor.f_opt
        result.nit     = t
        result.nfev    = (t + 1) * 2 * N
        result.message = deepcopy(taskset.normalizers)
        results.append(result)
    return results
Пример #4
0
    def _int_spontaneous_raman(self, z_array, raman_matrix, alphap_fiber,
                               freq_array, cr_raman_matrix, freq_diff, ase_bc,
                               bn_array, temperature):
        spontaneous_raman_scattering = OptimizeResult()

        dx = self.solver_params.z_resolution
        h = ph.value('Planck constant')
        kb = ph.value('Boltzmann constant')

        power_ase = np.nan * np.ones(raman_matrix.shape)
        int_pump = cumtrapz(raman_matrix, z_array, dx=dx, axis=1, initial=0)

        for f_ind, f_ase in enumerate(freq_array):
            cr_raman = cr_raman_matrix[f_ind, :]
            vibrational_loss = f_ase / freq_array[:f_ind]
            eta = 1 / (np.exp(
                (h * freq_diff[f_ind, f_ind + 1:]) / (kb * temperature)) - 1)

            int_fiber_loss = -alphap_fiber[f_ind] * z_array
            int_raman_loss = np.sum(
                (cr_raman[:f_ind] * vibrational_loss *
                 int_pump[:f_ind, :].transpose()).transpose(),
                axis=0)
            int_raman_gain = np.sum(
                (cr_raman[f_ind + 1:] *
                 int_pump[f_ind + 1:, :].transpose()).transpose(),
                axis=0)

            int_gain_loss = int_fiber_loss + int_raman_gain + int_raman_loss

            new_ase = np.sum(
                (cr_raman[f_ind + 1:] * (1 + eta) *
                 raman_matrix[f_ind + 1:, :].transpose()).transpose() * h *
                f_ase * bn_array[f_ind],
                axis=0)

            bc_evolution = ase_bc[f_ind] * np.exp(int_gain_loss)
            ase_evolution = np.exp(int_gain_loss) * cumtrapz(
                new_ase * np.exp(-int_gain_loss), z_array, dx=dx, initial=0)

            power_ase[f_ind, :] = bc_evolution + ase_evolution

        spontaneous_raman_scattering.x = power_ase
        spontaneous_raman_scattering.success = True
        spontaneous_raman_scattering.message = "Spontaneous Raman Scattering evaluated successfully"

        return spontaneous_raman_scattering
Пример #5
0
def scipy_nlopt_cobyla(*args, **kwargs):
    """Wraps nlopt library cobyla function to be compatible with scipy optimize

    parameters:
        args[0]: target, function to be minimized
        args[1]: x0, starting point for minimization
        bounds: list of bounds for the movement
                [[min, max], [min, max], ...]
        ftol_rel: same as in nlopt
        xtol_rel: same as in nlopt
            one of the tol_rel should be specified
    returns:
        OptimizeResult() object with properly set x, fun, success.
            status is not set when nlopt.RoundoffLimited is raised
    """
    answ = OptimizeResult()
    bounds = kwargs['bounds']

    opt = nlopt.opt(nlopt.LN_COBYLA, len(args[1]))
    opt.set_lower_bounds([i[0] for i in bounds])
    opt.set_upper_bounds([i[1] for i in bounds])
    if 'ftol_rel' in kwargs.keys():
        opt.set_ftol_rel(kwargs['ftol_rel'])
    if 'xtol_rel' in kwargs.keys():
        opt.set_ftol_rel(kwargs['xtol_rel'])
    opt.set_min_objective(args[0])

    x0 = list(args[1])

    try:
        x1 = opt.optimize(x0)
    except nlopt.RoundoffLimited:
        answ.x = x0
        answ.fun = args[0](x0)
        answ.success = False
        answ.message = 'nlopt.RoundoffLimited'
        return answ

    answ.x = x1
    answ.fun = args[0](x1)
    answ.success = True if opt.last_optimize_result() in [3, 4] else False
    answ.status = opt.last_optimize_result()
    if not answ.fun == opt.last_optimum_value():
        print 'Something\'s wrong, ', answ.fun, opt.last_optimum_value()

    return answ
Пример #6
0
def get_optimization_results(t, population, factorial_cost, scalar_fitness,
                             skill_factor, message):
    K = len(set(skill_factor))
    N = len(population) // 2
    results = []
    for k in range(K):
        result = OptimizeResult()
        x, fun = get_best_individual(population, factorial_cost,
                                     scalar_fitness, skill_factor, k)
        result.x = x
        result.fun = fun
        result.message = message
        result.nit = t
        result.nfev = (t + 1) * N
        mean, std = get_statistics(factorial_cost, skill_factor, k)
        result.mean = mean
        result.std = std
        results.append(result)
    return results
def dual_annealing(func,
                   bounds,
                   args=(),
                   maxiter=1000,
                   local_search_options={},
                   initial_temp=5230.,
                   restart_temp_ratio=2.e-5,
                   visit=2.62,
                   accept=-5.0,
                   maxfun=1e7,
                   seed=None,
                   no_local_search=False,
                   callback=None,
                   x0=None):
    """
    Find the global minimum of a function using Dual Annealing.

    Parameters
    ----------
    func : callable
        The objective function to be minimized. Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence, shape (n, 2)
        Bounds for variables.  ``(min, max)`` pairs for each element in ``x``,
        defining bounds for the objective function parameter.
    args : tuple, optional
        Any additional fixed parameters needed to completely specify the
        objective function.
    maxiter : int, optional
        The maximum number of global search iterations. Default value is 1000.
    local_search_options : dict, optional
        Extra keyword arguments to be passed to the local minimizer
        (`minimize`). Some important options could be:
        ``method`` for the minimizer method to use and ``args`` for
        objective function additional arguments.
    initial_temp : float, optional
        The initial temperature, use higher values to facilitates a wider
        search of the energy landscape, allowing dual_annealing to escape
        local minima that it is trapped in. Default value is 5230. Range is
        (0.01, 5.e4].
    restart_temp_ratio : float, optional
        During the annealing process, temperature is decreasing, when it
        reaches ``initial_temp * restart_temp_ratio``, the reannealing process
        is triggered. Default value of the ratio is 2e-5. Range is (0, 1).
    visit : float, optional
        Parameter for visiting distribution. Default value is 2.62. Higher
        values give the visiting distribution a heavier tail, this makes
        the algorithm jump to a more distant region. The value range is (0, 3].
    accept : float, optional
        Parameter for acceptance distribution. It is used to control the
        probability of acceptance. The lower the acceptance parameter, the
        smaller the probability of acceptance. Default value is -5.0 with
        a range (-1e4, -5].
    maxfun : int, optional
        Soft limit for the number of objective function calls. If the
        algorithm is in the middle of a local search, this number will be
        exceeded, the algorithm will stop just after the local search is
        done. Default value is 1e7.
    seed : {int or `~numpy.random.mtrand.RandomState` instance}, optional
        If `seed` is not specified the `~numpy.random.mtrand.RandomState`
        singleton is used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``RandomState`` instance, then that
        instance is used.
        Specify `seed` for repeatable minimizations. The random numbers
        generated with this seed only affect the visiting distribution
        function and new coordinates generation.
    no_local_search : bool, optional
        If `no_local_search` is set to True, a traditional Generalized
        Simulated Annealing will be performed with no local search
        strategy applied.
    callback : callable, optional
        A callback function with signature ``callback(x, f, context)``,
        which will be called for all minima found.
        ``x`` and ``f`` are the coordinates and function value of the
        latest minimum found, and ``context`` has value in [0, 1, 2], with the
        following meaning:

            - 0: minimum detected in the annealing process.
            - 1: detection occurred in the local search process.
            - 2: detection done in the dual annealing process.

        If the callback implementation returns True, the algorithm will stop.
    x0 : ndarray, shape(n,), optional
        Coordinates of a single N-D starting point.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a `OptimizeResult` object.
        Important attributes are: ``x`` the solution array, ``fun`` the value
        of the function at the solution, and ``message`` which describes the
        cause of the termination.
        See `OptimizeResult` for a description of other attributes.

    Notes
    -----
    This function implements the Dual Annealing optimization. This stochastic
    approach derived from [3]_ combines the generalization of CSA (Classical
    Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled
    to a strategy for applying a local search on accepted locations [4]_.
    An alternative implementation of this same algorithm is described in [5]_
    and benchmarks are presented in [6]_. This approach introduces an advanced
    method to refine the solution found by the generalized annealing
    process. This algorithm uses a distorted Cauchy-Lorentz visiting
    distribution, with its shape controlled by the parameter :math:`q_{v}`

    .. math::

        g_{q_{v}}(\\Delta x(t)) \\propto \\frac{ \\
        \\left[T_{q_{v}}(t) \\right]^{-\\frac{D}{3-q_{v}}}}{ \\
        \\left[{1+(q_{v}-1)\\frac{(\\Delta x(t))^{2}} { \\
        \\left[T_{q_{v}}(t)\\right]^{\\frac{2}{3-q_{v}}}}}\\right]^{ \\
        \\frac{1}{q_{v}-1}+\\frac{D-1}{2}}}

    Where :math:`t` is the artificial time. This visiting distribution is used
    to generate a trial jump distance :math:`\\Delta x(t)` of variable
    :math:`x(t)` under artificial temperature :math:`T_{q_{v}}(t)`.

    From the starting point, after calling the visiting distribution
    function, the acceptance probability is computed as follows:

    .. math::

        p_{q_{a}} = \\min{\\{1,\\left[1-(1-q_{a}) \\beta \\Delta E \\right]^{ \\
        \\frac{1}{1-q_{a}}}\\}}

    Where :math:`q_{a}` is a acceptance parameter. For :math:`q_{a}<1`, zero
    acceptance probability is assigned to the cases where

    .. math::

        [1-(1-q_{a}) \\beta \\Delta E] < 0

    The artificial temperature :math:`T_{q_{v}}(t)` is decreased according to

    .. math::

        T_{q_{v}}(t) = T_{q_{v}}(1) \\frac{2^{q_{v}-1}-1}{\\left( \\
        1 + t\\right)^{q_{v}-1}-1}

    Where :math:`q_{v}` is the visiting parameter.

    .. versionadded:: 1.2.0

    References
    ----------
    .. [1] Tsallis C. Possible generalization of Boltzmann-Gibbs
        statistics. Journal of Statistical Physics, 52, 479-487 (1998).
    .. [2] Tsallis C, Stariolo DA. Generalized Simulated Annealing.
        Physica A, 233, 395-406 (1996).
    .. [3] Xiang Y, Sun DY, Fan W, Gong XG. Generalized Simulated
        Annealing Algorithm and Its Application to the Thomson Model.
        Physics Letters A, 233, 216-220 (1997).
    .. [4] Xiang Y, Gong XG. Efficiency of Generalized Simulated
        Annealing. Physical Review E, 62, 4473 (2000).
    .. [5] Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized
        Simulated Annealing for Efficient Global Optimization: the GenSA
        Package for R. The R Journal, Volume 5/1 (2013).
    .. [6] Mullen, K. Continuous Global Optimization in R. Journal of
        Statistical Software, 60(6), 1 - 45, (2014). DOI:10.18637/jss.v060.i06

    Examples
    --------
    The following example is a 10-D problem, with many local minima.
    The function involved is called Rastrigin
    (https://en.wikipedia.org/wiki/Rastrigin_function)

    >>> from scipy.optimize import dual_annealing
    >>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x)
    >>> lw = [-5.12] * 10
    >>> up = [5.12] * 10
    >>> ret = dual_annealing(func, bounds=list(zip(lw, up)), seed=1234)
    >>> print("global minimum: xmin = {0}, f(xmin) = {1:.6f}".format(
    ...       ret.x, ret.fun))
    global minimum: xmin = [-4.26437714e-09 -3.91699361e-09 -1.86149218e-09 -3.97165720e-09
     -6.29151648e-09 -6.53145322e-09 -3.93616815e-09 -6.55623025e-09
    -6.05775280e-09 -5.00668935e-09], f(xmin) = 0.000000

    """  # noqa: E501
    if x0 is not None and not len(x0) == len(bounds):
        raise ValueError('Bounds size does not match x0')

    lu = list(zip(*bounds))
    lower = np.array(lu[0])
    upper = np.array(lu[1])
    # Check that restart temperature ratio is correct
    if restart_temp_ratio <= 0. or restart_temp_ratio >= 1.:
        raise ValueError('Restart temperature ratio has to be in range (0, 1)')
    # Checking bounds are valid
    if (np.any(np.isinf(lower)) or np.any(np.isinf(upper))
            or np.any(np.isnan(lower)) or np.any(np.isnan(upper))):
        raise ValueError('Some bounds values are inf values or nan values')
    # Checking that bounds are consistent
    if not np.all(lower < upper):
        raise ValueError('Bounds are not consistent min < max')
    # Checking that bounds are the same length
    if not len(lower) == len(upper):
        raise ValueError('Bounds do not have the same dimensions')

    # Wrapper for the objective function
    func_wrapper = ObjectiveFunWrapper(func, maxfun, *args)
    # Wrapper fot the minimizer
    minimizer_wrapper = LocalSearchWrapper(bounds, func_wrapper,
                                           **local_search_options)
    # Initialization of RandomState for reproducible runs if seed provided
    rand_state = check_random_state(seed)
    # Initialization of the energy state
    energy_state = EnergyState(lower, upper, callback)
    energy_state.reset(func_wrapper, rand_state, x0)
    # Minimum value of annealing temperature reached to perform
    # re-annealing
    temperature_restart = initial_temp * restart_temp_ratio
    # VisitingDistribution instance
    visit_dist = VisitingDistribution(lower, upper, visit, rand_state)
    # Strategy chain instance
    strategy_chain = StrategyChain(accept, visit_dist, func_wrapper,
                                   minimizer_wrapper, rand_state, energy_state)
    need_to_stop = False
    iteration = 0
    message = []
    # OptimizeResult object to be returned
    optimize_res = OptimizeResult()
    optimize_res.success = True
    optimize_res.status = 0

    t1 = np.exp((visit - 1) * np.log(2.0)) - 1.0
    # Run the search loop
    while (not need_to_stop):
        for i in range(maxiter):
            # Compute temperature for this step
            s = float(i) + 2.0
            t2 = np.exp((visit - 1) * np.log(s)) - 1.0
            temperature = initial_temp * t1 / t2
            if iteration >= maxiter:
                message.append("Maximum number of iteration reached")
                need_to_stop = True
                break
            # Need a re-annealing process?
            if temperature < temperature_restart:
                energy_state.reset(func_wrapper, rand_state)
                break
            # starting strategy chain
            val = strategy_chain.run(i, temperature)
            if val is not None:
                message.append(val)
                need_to_stop = True
                optimize_res.success = False
                break
            # Possible local search at the end of the strategy chain
            if not no_local_search:
                val = strategy_chain.local_search()
                if val is not None:
                    message.append(val)
                    need_to_stop = True
                    optimize_res.success = False
                    break
            iteration += 1

    # Setting the OptimizeResult values
    optimize_res.x = energy_state.xbest
    optimize_res.fun = energy_state.ebest
    optimize_res.nit = iteration
    optimize_res.nfev = func_wrapper.nfev
    optimize_res.njev = func_wrapper.ngev
    optimize_res.nhev = func_wrapper.nhev
    optimize_res.message = message
    return optimize_res
Пример #8
0
def model_policy_gradient(
        f: Callable[..., float],
        x0: np.ndarray,
        *,
        args=(),
        learning_rate: float = 1e-2,
        decay_rate: float = 0.96,
        decay_steps: int = 5,
        log_sigma_init: float = -5.0,
        max_iterations: int = 1000,
        batch_size: int = 10,
        radius_coeff: float = 3.0,
        warmup_steps: int = 10,
        batch_size_model: int = 65536,
        save_func_vals: bool = False,
        random_state: "cirq.RANDOM_STATE_OR_SEED_LIKE" = None,
        known_values: Optional[Tuple[List[np.ndarray], List[float]]] = None,
        max_evaluations: Optional[int] = None
) -> scipy.optimize.OptimizeResult:
    """Model policy gradient algorithm for black-box optimization.

    The idea of this algorithm is to perform policy gradient, but estimate
    the function values using a surrogate model. 
    The surrogate model is a least-squared quadratic
    fit to points sampled from the vicinity of the current iterate.

    Args:
        f: The function to minimize.
        x0: An initial guess.
        args: Additional arguments to pass to the function.
        learning_rate: The learning rate for the policy gradient.
        decay_rate: the learning decay rate for the Adam optimizer.
        decay_steps: the learning decay steps for the Adam optimizer.
        log_sigma_init: the intial value for the sigma of the policy
            in the log scale. 
        max_iterations: The maximum number of iterations to allow before
            termination.
        batch_size: The number of points to sample in each iteration. The cost 
            of evaluation of these samples are computed through the 
            quantum computer cost model.
        radius_coeff: The ratio determining the size of the radius around 
            the current iterate to sample points from to build the quadratic model.
            The ratio is with respect to the maximal ratio of the samples 
            from the current policy. 
        warmup_steps: The number of steps before the model policy gradient is performed. 
            before these steps, we use the policy gradient without the model. 
        batch_size_model: The model sample batch size. 
            After we fit the quadratic model, we use the model to evaluate 
            on big enough batch of samples.
        save_func_vals: whether to compute and save the function values for 
            the current value of parameter.   
        random_state: A seed (int) or `np.random.RandomState` class to use when
            generating random values. If not set, defaults to using the module
            methods in `np.random`.
        known_values: Any prior known values of the objective function.
            This is given as a tuple where the first element is a list
            of points and the second element is a list of the function values
            at those points.
        max_evaluations: The maximum number of function evaluations to allow
            before termination.

    Returns:
        Scipy OptimizeResult
    """
    random_state = value.parse_random_state(random_state)

    if known_values is not None:
        known_xs, known_ys = known_values
        known_xs = [np.copy(x) for x in known_xs]
        known_ys = [np.copy(y) for y in known_ys]
    else:
        known_xs, known_ys = [], []

    if max_evaluations is None:
        max_evaluations = np.inf

    n = len(x0)
    log_sigma = np.ones(n) * log_sigma_init
    sigma = np.exp(log_sigma)

    # set up the first and second moment estimate
    m_mean = np.zeros(n)
    v_mean = np.zeros(n)
    m_log_sigma = np.zeros(n)
    v_log_sigma = np.zeros(n)

    # set up lr schedule and optimizer
    lr_schedule1 = _ExponentialSchedule(learning_rate,
                                        decay_steps=decay_steps,
                                        decay_rate=decay_rate,
                                        staircase=True)
    lr_schedule2 = _ExponentialSchedule(learning_rate,
                                        decay_steps=decay_steps,
                                        decay_rate=decay_rate,
                                        staircase=True)

    _, f = wrap_function(f, args)
    res = OptimizeResult()
    current_x = np.copy(x0)
    res.x_iters = []  # initializes as lists
    res.xs_iters = []
    res.ys_iters = []
    res.func_vals = []
    res.fun = 0
    total_evals = 0
    num_iter = 0
    message = None

    # stats
    history_max = -np.inf

    while num_iter < max_iterations:
        # get samples from the current policy to evaluate
        z = random_state.randn(batch_size, n)
        new_xs = sigma * z + current_x

        if total_evals + batch_size > max_evaluations:
            message = "Reached maximum number of evaluations."
            break

        # Evaluate points
        res.xs_iters.append(new_xs)
        new_ys = [f(x) for x in new_xs]
        res.ys_iters.append(new_ys)
        total_evals += batch_size
        known_xs.extend(new_xs)
        known_ys.extend(new_ys)

        # Save function value
        if save_func_vals:
            res.func_vals.append(f(current_x))
            res.x_iters.append(np.copy(current_x))
            res.fun = res.func_vals[-1]

        # current sampling radius (maximal)
        max_radius = 0
        for x in new_xs:
            if np.linalg.norm(x - current_x) > max_radius:
                max_radius = np.linalg.norm(x - current_x)

        reward = [-y for y in new_ys]

        # warmup steps control whether to use the model to estimate the f
        if num_iter >= warmup_steps:
            # Determine points to use to build model
            model_xs = []
            model_ys = []
            for x, y in zip(known_xs, known_ys):
                if np.linalg.norm(x - current_x) < radius_coeff * max_radius:
                    model_xs.append(x)
                    model_ys.append(y)
            # safer way without the `SVD` not converging
            try:
                model = _get_quadratic_model(model_xs, model_ys, x)
                use_model = True
            except ValueError:
                use_model = False

            if use_model:
                # get samples (from model)
                z = random_state.randn(batch_size_model, n)
                new_xs = sigma * z + current_x

                # use the model for prediction
                new_ys = model.predict(new_xs - current_x)
                reward = [-y for y in new_ys]

        reward = np.array(reward)

        # stats
        reward_mean = np.mean(reward)
        reward_max = np.max(reward)

        if reward_max > history_max:
            history_max = reward_max

        # subtract baseline
        reward = reward - reward_mean

        # analytic derivatives (natural gradient policy gradient)
        delta_mean = np.dot(z.T, reward) * sigma
        delta_log_sigma = np.dot(z.T**2, reward) / np.sqrt(2)

        delta_mean_norm = np.linalg.norm(np.dot(z.T, reward))
        delta_log_sigma_norm = np.linalg.norm(np.dot(z.T**2, reward))

        delta_mean = delta_mean / delta_mean_norm
        delta_log_sigma = delta_log_sigma / delta_log_sigma_norm

        # gradient ascend to update the parameters
        current_x, m_mean, v_mean = _adam_update(delta_mean,
                                                 current_x,
                                                 num_iter,
                                                 m_mean,
                                                 v_mean,
                                                 lr_schedule=lr_schedule1)
        log_sigma, m_log_sigma, v_log_sigma = _adam_update(
            delta_log_sigma,
            log_sigma,
            num_iter,
            m_log_sigma,
            v_log_sigma,
            lr_schedule=lr_schedule2,
        )

        log_sigma = np.clip(log_sigma, -20.0, 2.0)
        sigma = np.exp(log_sigma)

        num_iter += 1

    final_val = f(current_x)
    res.func_vals.append(final_val)

    if message is None:
        message = "Reached maximum number of iterations."

    res.x_iters.append(current_x)
    total_evals += 1
    res.x = current_x
    res.fun = final_val
    res.nit = num_iter
    res.nfev = total_evals
    res.message = message
    return res
Пример #9
0
def model_gradient_descent(
        f: Callable[..., float],
        x0: np.ndarray,
        *,
        args=(),
        rate: float = 1e-1,
        sample_radius: float = 1e-1,
        n_sample_points: int = 100,
        n_sample_points_ratio: Optional[float] = None,
        rate_decay_exponent: float = 0.0,
        stability_constant: float = 0.0,
        sample_radius_decay_exponent: float = 0.0,
        tol: float = 1e-8,
        known_values: Optional[Tuple[List[np.ndarray], List[float]]] = None,
        max_iterations: Optional[int] = None,
        max_evaluations: Optional[int] = None) -> scipy.optimize.OptimizeResult:
    """Model gradient descent algorithm for black-box optimization.

    The idea of this algorithm is to perform gradient descent, but estimate
    the gradient using a surrogate model instead of, say, by
    finite-differencing. The surrogate model is a least-squared quadratic
    fit to points sampled from the vicinity of the current iterate.
    This algorithm works well when you have an initial guess which is in the
    convex neighborhood of a local optimum and you want to converge to that
    local optimum. It's meant to be used when the function is stochastic.

    Args:
        f: The function to minimize.
        x0: An initial guess.
        args: Additional arguments to pass to the function.
        rate: The learning rate for the gradient descent.
        sample_radius: The radius around the current iterate to sample
            points from to build the quadratic model.
        n_sample_points: The number of points to sample in each iteration.
        n_sample_points_ratio: This specifies the number of points to sample
            in each iteration as a coefficient of the number of points
            required to exactly determine a quadratic model. The number
            of sample points will be this coefficient times (n+1)(n+2)/2,
            rounded up, where n is the number of parameters.
            Setting this overrides n_sample_points.
        rate_decay_exponent: Controls decay of learning rate.
            In each iteration, the learning rate is changed to the
            base learning rate divided by (i + 1 + S)**a, where S
            is the stability constant and a is the rate decay exponent
            (this parameter).
        stability_constant: Affects decay of learning rate.
            In each iteration, the learning rate is changed to the
            base learning rate divided by (i + 1 + S)**a, where S
            is the stability constant (this parameter) and a is the rate decay
            exponent.
        sample_radius_decay_exponent: Controls decay of sample radius.
        tol: The algorithm terminates when the difference between the current
            iterate and the next suggested iterate is smaller than this value.
        known_values: Any prior known values of the objective function.
            This is given as a tuple where the first element is a list
            of points and the second element is a list of the function values
            at those points.
        max_iterations: The maximum number of iterations to allow before
            termination.
        max_evaluations: The maximum number of function evaluations to allow
            before termination.

    Returns:
        Scipy OptimizeResult
    """

    if known_values is not None:
        known_xs, known_ys = known_values
        known_xs = [np.copy(x) for x in known_xs]
        known_ys = [np.copy(y) for y in known_ys]
    else:
        known_xs, known_ys = [], []

    if max_iterations is None:
        max_iterations = np.inf
    if max_evaluations is None:
        max_evaluations = np.inf

    n = len(x0)
    if n_sample_points_ratio is not None:
        n_sample_points = int(
            np.ceil(n_sample_points_ratio * (n + 1) * (n + 2) / 2))

    _, f = wrap_function(f, args)
    res = OptimizeResult()
    current_x = np.copy(x0)
    res.x_iters = []  # initializes as lists
    res.xs_iters = []
    res.ys_iters = []
    res.func_vals = []
    res.model_vals = [None]
    res.fun = 0
    total_evals = 0
    num_iter = 0
    converged = False
    message = None

    while num_iter < max_iterations:
        current_sample_radius = (sample_radius /
                                 (num_iter + 1)**sample_radius_decay_exponent)

        # Determine points to evaluate
        # in ball around current point
        new_xs = [np.copy(current_x)] + [
            current_x + _random_point_in_ball(n, current_sample_radius)
            for _ in range(n_sample_points)
        ]

        if total_evals + len(new_xs) > max_evaluations:
            message = 'Reached maximum number of evaluations.'
            break

        # Evaluate points
        res.xs_iters.append(new_xs)
        new_ys = [f(x) for x in new_xs]
        res.ys_iters.append(new_ys)
        total_evals += len(new_ys)
        known_xs.extend(new_xs)
        known_ys.extend(new_ys)

        # Save function value
        res.func_vals.append(new_ys[0])
        res.x_iters.append(np.copy(current_x))
        res.fun = res.func_vals[-1]

        # Determine points to use to build model
        model_xs = []
        model_ys = []
        for x, y in zip(known_xs, known_ys):
            if np.linalg.norm(x - current_x) < current_sample_radius:
                model_xs.append(x)
                model_ys.append(y)
        # Build and solve model
        model_gradient, model = _get_least_squares_model_gradient(
            model_xs, model_ys, current_x)

        # calculate the gradient and update the current point
        gradient_norm = np.linalg.norm(model_gradient)
        decayed_rate = (
            rate / (num_iter + 1 + stability_constant)**rate_decay_exponent)
        # Convergence criteria
        if decayed_rate * gradient_norm < tol:
            converged = True
            message = 'Optimization converged successfully.'
            break
        # Update
        current_x -= decayed_rate * model_gradient
        res.model_vals.append(
            model.predict([-decayed_rate * model_gradient])[0])

        num_iter += 1

    if converged:
        final_val = res.func_vals[-1]
    else:
        final_val = f(current_x)
        res.func_vals.append(final_val)

    if message is None:
        message = 'Reached maximum number of iterations.'

    res.x_iters.append(current_x)
    total_evals += 1
    res.x = current_x
    res.fun = final_val
    res.nit = num_iter
    res.nfev = total_evals
    res.message = message
    return res
Пример #10
0
def dual_annealing(func, x0, bounds, args=(), maxiter=1000,
                   local_search_options={}, initial_temp=5230.,
                   restart_temp_ratio=2.e-5, visit=2.62, accept=-5.0,
                   maxfun=1e7, seed=None, no_local_search=False,
                   callback=None):
    """
    Find the global minimum of a function using Dual Annealing.

    Parameters
    ----------
    func : callable
        The objective function to be minimized.  Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    x0 : ndarray, shape(n,)
        A single initial starting point coordinates. If ``None`` is provided,
        initial coordinates are automatically generated (using the ``reset``
        method from the internal ``EnergyState`` class).
    bounds : sequence, shape (n, 2)
        Bounds for variables.  ``(min, max)`` pairs for each element in ``x``,
        defining bounds for the objective function parameter.
    args : tuple, optional
        Any additional fixed parameters needed to completely specify the
        objective function.
    maxiter : int, optional
        The maximum number of global search iterations. Default value is 1000.
    local_search_options : dict, optional
        Extra keyword arguments to be passed to the local minimizer
        (`minimize`). Some important options could be:
        ``method`` for the minimizer method to use and ``args`` for
        objective function additional arguments.
    initial_temp : float, optional
        The initial temperature, use higher values to facilitates a wider
        search of the energy landscape, allowing dual_annealing to escape
        local minima that it is trapped in. Default value is 5230. Range is
        (0.01, 5.e4].
    restart_temp_ratio : float, optional
        During the annealing process, temperature is decreasing, when it
        reaches ``initial_temp * restart_temp_ratio``, the reannealing process
        is triggered. Default value of the ratio is 2e-5. Range is (0, 1).
    visit : float, optional
        Parameter for visiting distribution. Default value is 2.62. Higher
        values give the visiting distribution a heavier tail, this makes
        the algorithm jump to a more distant region. The value range is (0, 3].
    accept : float, optional
        Parameter for acceptance distribution. It is used to control the
        probability of acceptance. The lower the acceptance parameter, the
        smaller the probability of acceptance. Default value is -5.0 with
        a range (-1e4, -5].
    maxfun : int, optional
        Soft limit for the number of objective function calls. If the
        algorithm is in the middle of a local search, this number will be
        exceeded, the algorithm will stop just after the local search is
        done. Default value is 1e7.
    seed : {int or `numpy.random.RandomState` instance}, optional
        If `seed` is not specified the `numpy.random.RandomState` singleton is
        used.
        If `seed` is an int, a new ``RandomState`` instance is used,
        seeded with `seed`.
        If `seed` is already a ``RandomState`` instance, then that
        instance is used.
        Specify `seed` for repeatable minimizations. The random numbers
        generated with this seed only affect the visiting distribution
        function and new coordinates generation.
    no_local_search : bool, optional
        If `no_local_search` is set to True, a traditional Generalized
        Simulated Annealing will be performed with no local search
        strategy applied.
    callback : callable, optional
        A callback function with signature ``callback(x, f, context)``,
        which will be called for all minima found.
        ``x`` and ``f`` are the coordinates and function value of the
        latest minimum found, and ``context`` has value in [0, 1, 2], with the
        following meaning:

            - 0: minimum detected in the annealing process.
            - 1: detection occured in the local search process.
            - 2: detection done in the dual annealing process.

        If the callback implementation returns True, the algorithm will stop.

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a `OptimizeResult` object.
        Important attributes are: ``x`` the solution array, ``fun`` the value
        of the function at the solution, and ``message`` which describes the
        cause of the termination.
        See `OptimizeResult` for a description of other attributes.

    Notes
    -----
    This function implements the Dual Annealing optimization. This stochastic
    approach derived from [3]_ combines the generalization of CSA (Classical
    Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled
    to a strategy for applying a local search on accepted locations [4]_.
    An alternative implementation of this same algorithm is described in [5]_
    and benchmarks are presented in [6]_. This approach introduces an advanced
    method to refine the solution found by the generalized annealing
    process. This algorithm uses a distorted Cauchy-Lorentz visiting
    distribution, with its shape controlled by the parameter :math:`q_{v}`

    .. math::

        g_{q_{v}}(\\Delta x(t)) \\propto \\frac{ \\
        \\left[T_{q_{v}}(t) \\right]^{-\\frac{D}{3-q_{v}}}}{ \\
        \\left[{1+(q_{v}-1)\\frac{(\\Delta x(t))^{2}} { \\
        \\left[T_{q_{v}}(t)\\right]^{\\frac{2}{3-q_{v}}}}}\\right]^{ \\
        \\frac{1}{q_{v}-1}+\\frac{D-1}{2}}}

    Where :math:`t` is the artificial time. This visiting distribution is used
    to generate a trial jump distance :math:`\\Delta x(t)` of variable
    :math:`x(t)` under artificial temperature :math:`T_{q_{v}}(t)`.

    From the starting point, after calling the visiting distribution
    function, the acceptance probability is computed as follows:

    .. math::

        p_{q_{a}} = \\min{\\{1,\\left[1-(1-q_{a}) \\beta \\Delta E \\right]^{ \\
        \\frac{1}{1-q_{a}}}\\}}

    Where :math:`q_{a}` is a acceptance parameter. For :math:`q_{a}<1`, zero
    acceptance probability is assigned to the cases where

    .. math::

        [1-(1-q_{a}) \\beta \\Delta E] < 0

    The artificial temperature :math:`T_{q_{v}}(t)` is decreased according to

    .. math::

        T_{q_{v}}(t) = T_{q_{v}}(1) \\frac{2^{q_{v}-1}-1}{\\left( \\
        1 + t\\right)^{q_{v}-1}-1}

    Where :math:`q_{v}` is the visiting parameter.

    .. versionadded:: 1.2.0

    References
    ----------
    .. [1] Tsallis C. Possible generalization of Boltzmann-Gibbs
        statistics. Journal of Statistical Physics, 52, 479-487 (1998).
    .. [2] Tsallis C, Stariolo DA. Generalized Simulated Annealing.
        Physica A, 233, 395-406 (1996).
    .. [3] Xiang Y, Sun DY, Fan W, Gong XG. Generalized Simulated
        Annealing Algorithm and Its Application to the Thomson Model.
        Physics Letters A, 233, 216-220 (1997).
    .. [4] Xiang Y, Gong XG. Efficiency of Generalized Simulated
        Annealing. Physical Review E, 62, 4473 (2000).
    .. [5] Xiang Y, Gubian S, Suomela B, Hoeng J. Generalized
        Simulated Annealing for Efficient Global Optimization: the GenSA
        Package for R. The R Journal, Volume 5/1 (2013).
    .. [6] Mullen, K. Continuous Global Optimization in R. Journal of
        Statistical Software, 60(6), 1 - 45, (2014). DOI:10.18637/jss.v060.i06

    Examples
    --------
    The following example is a 10-dimensional problem, with many local minima.
    The function involved is called Rastrigin
    (https://en.wikipedia.org/wiki/Rastrigin_function)

    >>> from scipy.optimize import dual_annealing
    >>> func = lambda x: np.sum(x*x - 10*np.cos(2*np.pi*x)) + 10*np.size(x)
    >>> lw = [-5.12] * 10
    >>> up = [5.12] * 10
    >>> ret = dual_annealing(func, None, bounds=list(zip(lw, up)), seed=1234)
    >>> print("global minimum: xmin = {0}, f(xmin) = {1:.6f}".format(
    ...       ret.x, ret.fun))
    global minimum: xmin = [-4.26437714e-09 -3.91699361e-09 -1.86149218e-09 -3.97165720e-09
     -6.29151648e-09 -6.53145322e-09 -3.93616815e-09 -6.55623025e-09
    -6.05775280e-09 -5.00668935e-09], f(xmin) = 0.000000

    """
    if x0 is not None and not len(x0) == len(bounds):
        raise ValueError('Bounds size does not match x0')

    lu = list(zip(*bounds))
    lower = np.array(lu[0])
    upper = np.array(lu[1])
    # Check that restart temperature ratio is correct
    if restart_temp_ratio <= 0. or restart_temp_ratio >= 1.:
        raise ValueError('Restart temperature ratio has to be in range (0, 1)')
    # Checking bounds are valid
    if (np.any(np.isinf(lower)) or np.any(np.isinf(upper)) or np.any(
            np.isnan(lower)) or np.any(np.isnan(upper))):
        raise ValueError('Some bounds values are inf values or nan values')
    # Checking that bounds are consistent
    if not np.all(lower < upper):
        raise ValueError('Bounds are note consistent min < max')

    # Wrapper for the objective function
    func_wrapper = ObjectiveFunWrapper(func, maxfun, *args)
    # Wrapper fot the minimizer
    minimizer_wrapper = LocalSearchWrapper(
        bounds, func_wrapper, **local_search_options)
    # Initialization of RandomState for reproducible runs if seed provided
    rand_state = check_random_state(seed)
    # Initialization of the energy state
    energy_state = EnergyState(lower, upper, callback)
    energy_state.reset(func_wrapper, rand_state, x0)
    # Minimum value of annealing temperature reached to perform
    # re-annealing
    temperature_restart = initial_temp * restart_temp_ratio
    # VisitingDistribution instance
    visit_dist = VisitingDistribution(lower, upper, visit, rand_state)
    # Strategy chain instance
    strategy_chain = StrategyChain(accept, visit_dist, func_wrapper,
                               minimizer_wrapper, rand_state, energy_state)
    # Run the search loop
    need_to_stop = False
    iteration = 0
    message = []
    t1 = np.exp((visit - 1) * np.log(2.0)) - 1.0
    while(not need_to_stop):
        for i in range(maxiter):
            # Compute temperature for this step
            s = float(i) + 2.0
            t2 = np.exp((visit - 1) * np.log(s)) - 1.0
            temperature = initial_temp * t1 / t2
            iteration += 1
            if iteration >= maxiter:
                message.append("Maximum number of iteration reached")
                need_to_stop = True
                break
            # Need a re-annealing process?
            if temperature < temperature_restart:
                energy_state.reset(func_wrapper, rand_state)
                break
            # starting strategy chain
            val = strategy_chain.run(i, temperature)
            if val is not None:
                message.append(val)
                need_to_stop = True
                break
            # Possible local search at the end of the strategy chain
            if not no_local_search:
                val = strategy_chain.local_search()
                if val is not None:
                    message.append(val)
                    need_to_stop = True
                    break

    # Return the OptimizeResult
    res = OptimizeResult()
    res.x = energy_state.xbest
    res.fun = energy_state.ebest
    res.nit = iteration
    res.nfev = func_wrapper.nfev
    res.njev = func_wrapper.ngev
    res.message = message
    return res
Пример #11
0
def optimize_minimize_mhmcmc_cluster(objective,
                                     bounds,
                                     args=(),
                                     x0=None,
                                     T=1,
                                     N=3,
                                     burnin=100000,
                                     maxiter=1000000,
                                     target_ar=0.4,
                                     ar_tolerance=0.05,
                                     cluster_eps=DEFAULT_CLUSTER_EPS,
                                     rnd_seed=None,
                                     collect_samples=None,
                                     logger=None):
    """
    Minimize objective function and return up to N local minima solutions.

    :param objective: Objective function to minimize. Takes unpacked args as function call arguments and returns
        a float.
    :type objective: Callable(\*args) -> float
    :param bounds: Bounds of the parameter space.
    :type bounds: scipy.optimize.Bounds
    :param args: Any additional fixed parameters needed to completely specify the objective function.
    :type args: tuple or list
    :param x0: Initial guess. If None, will be selected randomly and uniformly within the parameter bounds.
    :type x0: numpy.array with same shape as elements of bounds
    :param T: The "temperature" parameter for the accept or reject criterion. To sample the domain well,
        should be in the order of the typical difference in local minima objective valuations.
    :type T: float
    :param N: Maximum number of minima to return
    :type N: int
    :param burnin: Number of random steps to discard before starting to accumulate statistics.
    :type burnin: int
    :param maxiter: Maximum number of steps to take (including burnin).
    :type maxiter: int
    :param target_ar: Target acceptance rate of point samples generated by stepping.
    :type target_ar: float between 0 and 1
    :param ar_tolerance: Tolerance on the acceptance rate before actively adapting the step size.
    :type ar_tolerance: float
    :param cluster_eps: Point proximity tolerance for DBSCAN clustering, in normalized bounds coordinates.
    :type cluster_eps: float
    :param rnd_seed: Random seed to force deterministic behaviour
    :type rnd_seed: int
    :param collect_samples: If not None and integral type, collect collect_samples at regular intervals
        and return as part of solution.
    :type collect_samples: int or NoneType
    :param logger: Logger instance for outputting log messages.
    :return: OptimizeResult containing solution(s) and solver data.
    :rtype: scipy.optimize.OptimizeResult with additional attributes
    """
    @call_counter
    def obj_counted(*args):
        return objective(*args)

    # end func

    assert maxiter >= 2 * burnin, "maxiter {} should be at least twice burnin steps {}".format(
        maxiter, burnin)
    main_iter = maxiter - burnin

    if collect_samples is not None:
        assert isinstance(collect_samples,
                          int), "collect_samples expected to be integral type"
        assert collect_samples > 0, "collect_samples expected to be positive"
    # end if

    beta = 1.0 / T

    if rnd_seed is None:
        rnd_seed = int(time.time() * 1000) % (1 << 31)
    # end if
    np.random.seed(rnd_seed)
    if logger:
        logger.info('Using random seed {}'.format(rnd_seed))
    # end

    if x0 is None:
        x0 = np.random.uniform(bounds.lb, bounds.ub)
    # end if
    assert np.all((x0 >= bounds.lb) & (x0 <= bounds.ub))
    x = x0.copy()
    funval = obj_counted(x, *args)

    # Set up stepper with adaptive acceptance rate
    stepper = BoundedRandNStepper(bounds)
    stepper = AdaptiveStepsize(stepper,
                               accept_rate=target_ar,
                               ar_tolerance=ar_tolerance,
                               interval=50)

    # -------------------------------
    # DO BURN-IN
    rejected_randomly = 0
    accepted_burnin = 0
    tracked_range = tqdm(range(burnin), total=burnin, desc='BURN-IN')
    if logger:
        stepper.logger = lambda msg: tracked_range.write(logger.name + ':' +
                                                         msg)
    else:
        stepper.logger = tracked_range.write
    # end if
    for _ in tracked_range:
        x_new = stepper(x)
        funval_new = obj_counted(x_new, *args)
        log_alpha = -(funval_new - funval) * beta
        if log_alpha > 0 or np.log(np.random.rand()) <= log_alpha:
            x = x_new
            funval = funval_new
            stepper.notify_accept()
            accepted_burnin += 1
        elif log_alpha <= 0:
            rejected_randomly += 1
        # end if
    # end for
    ar = float(accepted_burnin) / burnin
    if logger:
        logger.info("Burn-in acceptance rate: {}".format(ar))
    # end if

    # -------------------------------
    # DO MAIN LOOP
    if collect_samples is not None:
        nsamples = min(collect_samples, main_iter)
        sample_cadence = main_iter / nsamples
        samples = np.zeros((nsamples, len(x)))
        samples_fval = np.zeros(nsamples)
    # end if
    accepted = 0
    rejected_randomly = 0
    minima_sorted = SortedList(
        key=lambda rec: rec[1])  # Sort by objective function value
    hist = HistogramIncremental(bounds, nbins=100)
    # Cached a lot of potential minimum values, as these need to be clustered before return N results
    N_cached = int(np.ceil(N * main_iter / 500))
    next_sample = 0.0
    sample_count = 0
    tracked_range = tqdm(range(main_iter), total=main_iter, desc='MAIN')
    if logger:
        stepper.logger = lambda msg: tracked_range.write(logger.name + ':' +
                                                         msg)
    else:
        stepper.logger = tracked_range.write
    # end if
    for i in tracked_range:
        if collect_samples and i >= next_sample:
            assert sample_count < collect_samples
            samples[sample_count] = x
            samples_fval[sample_count] = funval
            sample_count += 1
            next_sample += sample_cadence
        # end if
        x_new = stepper(x)
        funval_new = obj_counted(x_new, *args)
        log_alpha = -(funval_new - funval) * beta
        if log_alpha > 0 or np.log(np.random.rand()) <= log_alpha:
            x = x_new
            funval = funval_new
            minima_sorted.add((x, funval))
            if len(minima_sorted) > N_cached:
                minima_sorted.pop()
            # end if
            stepper.notify_accept()
            hist += x
            accepted += 1
        elif log_alpha <= 0:
            rejected_randomly += 1
        # end if
    # end for
    stepper.logger = None
    ar = float(accepted) / main_iter
    if logger:
        logger.info("Acceptance rate: {}".format(ar))
        logger.info("Best minima (before clustering):\n{}".format(
            np.array([_mx[0] for _mx in minima_sorted[:10]])))
    # end if

    # -------------------------------
    # Cluster minima and associate each cluster with a local minimum.
    # Using a normalized coordinate space for cluster detection.
    x_range = bounds.ub - bounds.lb
    pts = np.array([x[0] for x in minima_sorted])
    fvals = np.array([x[1] for x in minima_sorted])
    pts_norm = (pts - bounds.lb) / x_range
    _, labels = dbscan(pts_norm, eps=cluster_eps, min_samples=21, n_jobs=-1)

    # Compute mean of each cluster and evaluate objective function at cluster mean locations.
    minima_candidates = []
    for grp in range(max(labels) + 1):
        mask = (labels == grp)
        mean_loc = np.mean(pts[mask, :], axis=0)
        # Evaluate objective function precisely at the mean location of each cluster
        fval = obj_counted(mean_loc, *args)
        minima_candidates.append((mean_loc, grp, fval))
    # end for

    # Rank minima locations by objective function.
    minima_candidates.sort(key=lambda c: c[2])

    # Pick up to N solutions
    solutions = minima_candidates[:N]

    # Put results into OptimizeResult container.
    # Add histograms to output result (in form of scipy.stats.rv_histogram)
    solution = OptimizeResult()
    solution.x = np.array([s[0] for s in solutions])
    solution.clusters = [pts[(labels == s[1])] for s in solutions]
    solution.cluster_funvals = [fvals[(labels == s[1])] for s in solutions]
    solution.bins = hist.bins
    solution.distribution = hist.histograms
    solution.acceptance_rate = ar
    solution.success = True
    solution.status = 0
    if len(solutions) > 0:
        solution.message = 'SUCCESS: Found {} local minima'.format(
            len(solutions))
    else:
        solution.message = 'WARNING: Found no clusters within tolerance {}'.format(
            cluster_eps)
    # end if
    solution.fun = np.array([s[2] for s in solutions])
    solution.jac = None
    solution.nfev = obj_counted.counter
    solution.njev = 0
    solution.nit = main_iter
    solution.maxcv = None
    solution.samples = samples if collect_samples else None
    solution.sample_funvals = samples_fval if collect_samples else None
    solution.bounds = bounds
    solution.version = 's0.3'  # Solution version for future traceability
    solution.rnd_seed = rnd_seed

    return solution