def F(t, θ): # dθ = dθ.reshape(n, n) _θ = θ.reshape(n, n) dθ = np.zeros_like(_θ) f = lambda θ_i, θ_j: np.sin(θ_j - θ_i) for i in range(n): for j in range(n): # print(_θ[i, j]) # dθ[i] = ω[i] + (K / N) * np.sum(np.sin(θ - θ_i)) phase_difference = f(_θ[i, j], _θ) conv = wiener(phase_difference, k_dim) dθ[i, j] = _ω[i, j] + K * np.sum(conv) return dθ.flatten()
def Proposed_method(im): gry_im = im2gray(im) / 255 filtered_im = sig.wiener(gry_im, Windo) T, I, F = NS_transform(filtered_im) alpha = .001 pre_entr = entropy(I) while True: T, I, F = NS_alpha_mean(T, I, F) entr = entropy(I) print(entr) if (entr - pre_entr) / pre_entr < alpha: break pre_entr = entr return filters.median((T > filters.threshold_sauvola(T)))
def convert_audio(path, audio_duration=3): """Given a path to an audio file, extract the log-scaled mel-spectrogram""" input_length = 44100 * audio_duration signal, sample_rate = librosa.load(path, sr=44100) signal, _ = librosa.effects.trim(signal, top_db=25) signal = wiener(signal) if len(signal) > input_length: signal = signal[0:input_length] elif input_length > len(signal): max_offset = input_length - len(signal) signal = np.pad(signal, (0, max_offset), "constant") mel_spectrogram = librosa.feature.melspectrogram(signal, sr=sample_rate, n_fft=2048, hop_length=512, n_mels=128) lms = librosa.power_to_db(mel_spectrogram) lms = np.expand_dims(lms, axis=-1) return lms
def features_and_plot(lista_img, lista_mask, printing=False): id_feat_list = [] row, col = lista_img[0].shape for cont in range(0, len(lista_img)): # Equalized hist of image dst = cv2.equalizeHist(lista_img[cont] * lista_mask[cont]) # Wiener filter filtered_img = wiener(dst, (3, 3), noise=10) # Extract Haralick Features feature_map, h_feature = extract_haralick(filtered_img) id_feat_list.append(h_feature) # showing the features if printing: fig, ([ax1, ax2]) = plt.subplots(1, 2, figsize=(12, 10)) fig.suptitle("Scans: " + str(cont + 1), y=0.8, fontsize=16) ax1.imshow(dst, cmap=plt.cm.gray) ax1.set_title("Equalized image (Masked)") ax2.imshow(feature_map, cmap=plt.cm.viridis) ax2.set_title("Haralick Features Map") plt.tight_layout() return id_feat_list
# PRODUCE TEACHER SIGNAL ########################### #generate teaching signal orthogonal signal to input teach = np.loadtxt( '/home/federico/project/work/trunk/data/Berkeley/rad-auditory/wehr/Tools/' + datadir + '/1_.txt') # framepersec = len(teach) / 15 teach = teach[0:framepersec / (duration_rec / 1000)] #interpolate to match lenght signal_ad = [np.linspace(0, duration_rec, len(teach)), teach] ynew = np.linspace(0, duration_rec, nT + 1) s = interpolate.interp1d(signal_ad[0], signal_ad[1], kind="linear") teach_sig = s(ynew) teach_sig = sigtool.wiener( teach_sig ) #np.abs(sigtool.hilbert(teach_sig)) #sigtool.detrend(teach_sig)#= np.abs(sigtool.hilbert(teach_sig)) sigtool.wiener(teach_sig)# #get envelope #teach_sig = sigtool.convolve(teach_sig,teach_sig) teach_sig = smooth(teach_sig, window_len=smoothing_len, window='hanning') ####################### # TEACH AND TEST ###################### for this_trial in range(1, num_trials_test + num_trials_teach): if this_trial <= num_trials_teach - 1: do_trial(what='teach', this_trial=this_trial, teacher=teach_sig) if this_trial > num_trials_teach: do_trial(what='test', this_trial=this_trial, teacher=teach_sig) #imshow(np.reshape(res.ReadoutW['output'], (16,16)), interpolation='nearest')
output[x] = mags #output[output<np.mean(output) + np.std(output)*9] = 0 #output[output>0] = 1 def rebin(arr, downSample0, downSample1): shape = (arr.shape[0] // downSample0, downSample0, arr.shape[1] // downSample1, downSample1) return arr[0:(arr.shape[0] // downSample0) * downSample0, 0:(arr.shape[1] // downSample1) * downSample1].reshape(shape).mean(-1).mean(1) output = wiener(output, (25, 1)) binSize = 4 output = rebin(output, binSize, 1) #print(np.max(output)) #output[output<1] = 0 #output[output>8] = 1 # display fft waterfall type stuff if display: offset = 1000 img = output[offset:950 + offset, :] img = img / np.max(img) map_color = cv2.COLORMAP_HOT img = np.uint8(img * 255) img = cv2.applyColorMap(img, map_color)
import cv2 from scipy.signal.signaltools import wiener from skimage.util import random_noise from matplotlib import pyplot as plt img = cv2.normalize( cv2.imread("Lenna.jpg", cv2.NORM_MINMAX).astype("float"), None, 0.0, 1.0, cv2.NORM_MINMAX) imgn = random_noise(img) imgd1 = wiener(imgn, (3, 3)) imgd2 = wiener(imgn, (5, 5)) imgd3 = wiener(imgn, (7, 7)) plt.subplot(131) plt.imshow(imgd1) plt.subplot(132) plt.imshow(imgd2) plt.subplot(133) plt.imshow(imgd3) plt.show()
def audioFilter(audio,samplingrate): filtered_audio = wiener(audio) # Filter the image denoise = denoise_wavelet(filtered_audio, method='BayesShrink', mode='soft', wavelet_levels=3, wavelet='sym8',rescale_sigma='True') return list(denoise)