Пример #1
0
def _solve_P_Q(U, V, structure=None):
    """
    A helper function for expm_2009.

    Parameters
    ----------
    U : ndarray
        Pade numerator.
    V : ndarray
        Pade denominator.
    structure : str, optional
        A string describing the structure of both matrices `U` and `V`.
        Only `upper_triangular` is currently supported.

    Notes
    -----
    The `structure` argument is inspired by similar args
    for theano and cvxopt functions.

    """
    P = U + V
    Q = -U + V
    if isspmatrix(U) or is_pydata_spmatrix(U):
        return spsolve(Q, P)
    elif structure is None:
        return solve(Q, P)
    elif structure == UPPER_TRIANGULAR:
        return solve_triangular(Q, P)
    else:
        raise ValueError('unsupported matrix structure: ' + str(structure))
Пример #2
0
def _smart_matrix_product(A, B, alpha=None, structure=None):
    """
    A matrix product that knows about sparse and structured matrices.

    Parameters
    ----------
    A : 2d ndarray
        First matrix.
    B : 2d ndarray
        Second matrix.
    alpha : float
        The matrix product will be scaled by this constant.
    structure : str, optional
        A string describing the structure of both matrices `A` and `B`.
        Only `upper_triangular` is currently supported.

    Returns
    -------
    M : 2d ndarray
        Matrix product of A and B.

    """
    if len(A.shape) != 2:
        raise ValueError('expected A to be a rectangular matrix')
    if len(B.shape) != 2:
        raise ValueError('expected B to be a rectangular matrix')
    f = None
    if structure == UPPER_TRIANGULAR:
        if (not isspmatrix(A) and not isspmatrix(B)
                and not is_pydata_spmatrix(A) and not is_pydata_spmatrix(B)):
            f, = scipy.linalg.get_blas_funcs(('trmm',), (A, B))
    if f is not None:
        if alpha is None:
            alpha = 1.
        out = f(alpha, A, B)
    else:
        if alpha is None:
            out = A.dot(B)
        else:
            out = alpha * A.dot(B)
    return out
Пример #3
0
def _is_upper_triangular(A):
    # This function could possibly be of wider interest.
    if isspmatrix(A):
        lower_part = scipy.sparse.tril(A, -1)
        # Check structural upper triangularity,
        # then coincidental upper triangularity if needed.
        return lower_part.nnz == 0 or lower_part.count_nonzero() == 0
    elif is_pydata_spmatrix(A):
        import sparse
        lower_part = sparse.tril(A, -1)
        return lower_part.nnz == 0
    else:
        return not np.tril(A, -1).any()
Пример #4
0
def _expm(A, use_exact_onenorm):
    # Core of expm, separated to allow testing exact and approximate
    # algorithms.

    # Avoid indiscriminate asarray() to allow sparse or other strange arrays.
    if isinstance(A, (list, tuple, np.matrix)):
        A = np.asarray(A)
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected a square matrix')

    # gracefully handle size-0 input,
    # carefully handling sparse scenario
    if A.shape == (0, 0):
        out = np.zeros([0, 0], dtype=A.dtype)
        if isspmatrix(A) or is_pydata_spmatrix(A):
            return A.__class__(out)
        return out

    # Trivial case
    if A.shape == (1, 1):
        out = [[np.exp(A[0, 0])]]

        # Avoid indiscriminate casting to ndarray to
        # allow for sparse or other strange arrays
        if isspmatrix(A) or is_pydata_spmatrix(A):
            return A.__class__(out)

        return np.array(out)

    # Ensure input is of float type, to avoid integer overflows etc.
    if ((isinstance(A, np.ndarray) or isspmatrix(A) or is_pydata_spmatrix(A))
            and not np.issubdtype(A.dtype, np.inexact)):
        A = A.astype(float)

    # Detect upper triangularity.
    structure = UPPER_TRIANGULAR if _is_upper_triangular(A) else None

    if use_exact_onenorm == "auto":
        # Hardcode a matrix order threshold for exact vs. estimated one-norms.
        use_exact_onenorm = A.shape[0] < 200

    # Track functions of A to help compute the matrix exponential.
    h = _ExpmPadeHelper(
            A, structure=structure, use_exact_onenorm=use_exact_onenorm)

    # Try Pade order 3.
    eta_1 = max(h.d4_loose, h.d6_loose)
    if eta_1 < 1.495585217958292e-002 and _ell(h.A, 3) == 0:
        U, V = h.pade3()
        return _solve_P_Q(U, V, structure=structure)

    # Try Pade order 5.
    eta_2 = max(h.d4_tight, h.d6_loose)
    if eta_2 < 2.539398330063230e-001 and _ell(h.A, 5) == 0:
        U, V = h.pade5()
        return _solve_P_Q(U, V, structure=structure)

    # Try Pade orders 7 and 9.
    eta_3 = max(h.d6_tight, h.d8_loose)
    if eta_3 < 9.504178996162932e-001 and _ell(h.A, 7) == 0:
        U, V = h.pade7()
        return _solve_P_Q(U, V, structure=structure)
    if eta_3 < 2.097847961257068e+000 and _ell(h.A, 9) == 0:
        U, V = h.pade9()
        return _solve_P_Q(U, V, structure=structure)

    # Use Pade order 13.
    eta_4 = max(h.d8_loose, h.d10_loose)
    eta_5 = min(eta_3, eta_4)
    theta_13 = 4.25

    # Choose smallest s>=0 such that 2**(-s) eta_5 <= theta_13
    if eta_5 == 0:
        # Nilpotent special case
        s = 0
    else:
        s = max(int(np.ceil(np.log2(eta_5 / theta_13))), 0)
    s = s + _ell(2**-s * h.A, 13)
    U, V = h.pade13_scaled(s)
    X = _solve_P_Q(U, V, structure=structure)
    if structure == UPPER_TRIANGULAR:
        # Invoke Code Fragment 2.1.
        X = _fragment_2_1(X, h.A, s)
    else:
        # X = r_13(A)^(2^s) by repeated squaring.
        for i in range(s):
            X = X.dot(X)
    return X