Пример #1
0
 def _get_frequencies(self, texts):
     vectorizer = self._create_vectorizer()
     counts = vectorizer.fit_transform(texts)
     counts = coo_matrix.sum(counts, axis=0).tolist()[0]
     amount = sum(counts)
     mapping = vectorizer.vocabulary_
     freqs = {term: counts[i] / amount for term, i in mapping.items()}
     return freqs
def get_frequencies(texts):
    vectorizer = create_vectorizer()
    term_counts = vectorizer.fit_transform(texts)
    term_counts = coo_matrix.sum(term_counts, axis=0).tolist()[0]
    amount = sum(term_counts)
    mapping = vectorizer.vocabulary_
    frequencies = {term: term_counts[index] / amount for term, index in mapping.items()}
    return frequencies
 def _get_frequencies(self, texts):
     vectorizer = self._create_vectorizer()
     counts = vectorizer.fit_transform(texts)
     counts = coo_matrix.sum(counts, axis=0).tolist()[0]
     amount = sum(counts)
     mapping = vectorizer.vocabulary_
     freqs = {term: counts[i] / amount for term, i in mapping.items()}
     return freqs
Пример #4
0
def getDiffusionParam(adjMatrix):
    L = csgraph.laplacian(adjMatrix, normed=True)
    n = adjMatrix.shape[0]
    I = identity(n, dtype='int8', format='csr')
    axisSum = coo_matrix.sum(np.abs(L), axis=0)
    sumMax = np.max(axisSum)
    diffusionParameter = (1 / float(sumMax))
    ps = (I + (diffusionParameter * L))
    return ps
Пример #5
0
def get_frequencies(texts):
    vectorizer = create_vectorizer()
    term_counts = vectorizer.fit_transform(texts)
    term_counts = coo_matrix.sum(term_counts, axis=0).tolist()[0]
    amount = sum(term_counts)
    mapping = vectorizer.vocabulary_
    frequencies = {
        term: term_counts[index] / amount
        for term, index in mapping.items()
    }
    return frequencies
Пример #6
0
def nadjacency(A):
    isSparse = sp.sparse.issparse(A)

    if(isSparse):
        [d] = np.array(coo_matrix.sum(A,1)).T
        d = d.astype(float)
        d[d!=0] = 1 / (d[d!=0] ** (0.5))
        [i,j,v] = sp.sparse.find(A)
       
        return coo_matrix((v*d[i]*d[j],(i,j)),shape=A.shape)
    else:
        d = np.array(np.sum(A,1))
        d = d.astype(float)
        d[d!=0] = 1 / (d[d!=0] ** (0.5))

        return np.dot(np.dot(np.diag(d),A),np.diag(d))
Пример #7
0
def log_post_logwbeta_params(prior, sigma, c, t, tau, w, w0, beta, n, u, p_ij,
                             a_t, b_t, gamma, sum_n, adj, **kwargs):
    log_post_par = kwargs['log_post_par'] if 'log_post_par' in kwargs else \
        log_post_params(prior, sigma, c, t, tau, w0, beta, u, a_t, b_t)
    if gamma == 0:
        log_post_wbetapar = log_post_par + sum(sum_n * np.log(w) - w * sum(w) +
                                               (u - 1) * np.log(w0) -
                                               np.log(beta))
    if gamma != 0:
        p = adj.multiply(p_ij)
        nlogp = coo_matrix.sum(
            n.multiply(p._with_data(np.log(p.data), copy=True)))
        log_post_wbetapar = log_post_par + sum(sum_n * np.log(w) -
                                               w * np.dot(p_ij, w) +
                                               (u - 1) * np.log(w0)) + nlogp
    log_post_logwbetaparams = log_post_wbetapar + sum(np.log(w0))
    return log_post_logwbetaparams
Пример #8
0
def nadjacency(A):
    # # # Recover to dense
    # # d = A.todense();
    # # # get sum of anix 2
    # # d = d.sum(1);
    # d = np.array(coo_matrix.sum(A,1)).T
    # for x in np.nditer(d, op_flags = ['readwrite']):
    # 	if x != 0:
    # 		x[...] = 1/(math.sqrt(x))

    # if sp.sparse.issparse(A):
    # 	[i, j, v] = sp.sparse.find(A)
    # 	# m, n = A.shape
    # 	N = sp.sparse.coo_matrix(( v * d[i] * d[j], (i,j)), shape = A.shape)
    # else:
    # 	N = np.dot(np.dot(np.diag(d), A), np.diag(d));

    # return N

    if (sp.sparse.issparse(A)):

        [d] = np.array(coo_matrix.sum(A, 1)).T
        for x in np.nditer(d, op_flags=['readwrite']):
            if x != 0:
                x[...] = 1 / (math.sqrt(x))

        [i, j, v] = sp.sparse.find(A)
        N = coo_matrix((v * d[i] * d[j], (i, j)), shape=A.shape)

    else:
        d = np.array(np.sum(A, 1))
        d = d.astype(float)
        d[d != 0] = 1 / (d[d != 0]**(0.5))

        N = np.dot(np.dot(np.diag(d), A), np.diag(d))

    return N
Пример #9
0
def nadjacency(A):
	# # # Recover to dense
	# # d = A.todense();
	# # # get sum of anix 2
	# # d = d.sum(1);
	# d = np.array(coo_matrix.sum(A,1)).T 
	# for x in np.nditer(d, op_flags = ['readwrite']):
	# 	if x != 0:
	# 		x[...] = 1/(math.sqrt(x))

	# if sp.sparse.issparse(A):
	# 	[i, j, v] = sp.sparse.find(A)
	# 	# m, n = A.shape
	# 	N = sp.sparse.coo_matrix(( v * d[i] * d[j], (i,j)), shape = A.shape)
	# else:
	# 	N = np.dot(np.dot(np.diag(d), A), np.diag(d));

	# return N

	if (sp.sparse.issparse(A)):

		[d] = np.array(coo_matrix.sum(A,1)).T
		for x in np.nditer(d, op_flags = ['readwrite']):
			if x != 0:
				x[...] = 1/(math.sqrt(x))

		[i,j,v] = sp.sparse.find(A)
		N = coo_matrix((v * d[i] * d[j],(i,j)),shape = A.shape)

	else:
		d = np.array(np.sum(A,1))
		d = d.astype(float)
		d[d!=0] = 1 / (d[d!=0] ** (0.5))

		N =  np.dot(np.dot(np.diag(d),A),np.diag(d))

	return N
Пример #10
0
 def __init__(self,
              network,
              validation,
              selectedQueryMode=None,
              method='Diffusion',
              processors=None):
     '''
     Constructor:
     Calls the parent constructor
     '''
     AlgorithmParent.__init__(self,
                              method=method,
                              network=network,
                              validation=validation,
                              selectedQueryMode=selectedQueryMode)
     # adjacencyMatrix is the A matrix
     # Set up a problem
     # started with normed set to False
     adjMatrix = self.network.getAdjacencyMatrix()
     L = csgraph.laplacian(adjMatrix, normed=True)
     n = adjMatrix.shape[0]
     I = identity(n, dtype='int8', format='csr')
     # Parameter that weights smoothness versus loss.
     # Called "mu" in Shin et al 2007.
     #################################################################
     # Right now I am summing by zero dimension (column) but we may have to
     # sum and average or something if the matrix is not symmetric.
     #################################################################
     axisSum = coo_matrix.sum(np.abs(L), axis=0)
     sumMax = np.max(axisSum)
     self.alpha = (1 / float(sumMax))
     self.saveAlpha()
     # ps is the same for given adjacency matrix, so we precompute it for
     # every diffusion experiment (I+alpha*L)
     self.__ps = (I + (self.alpha * L))
     self.processors = processors
Пример #11
0
def mcmc(G,
         iter,
         nburn,
         w0=False,
         beta=False,
         n=False,
         u=False,
         sigma=False,
         c=False,
         t=False,
         tau=False,
         x=False,
         hyperparams=False,
         wnu=False,
         all=False,
         sigma_sigma=0.01,
         sigma_c=0.01,
         sigma_t=0.01,
         sigma_tau=0.01,
         sigma_x=0.01,
         a_t=200,
         b_t=1,
         epsilon=0.01,
         R=5,
         w_inference='HMC',
         save_every=1000,
         init='none',
         index=None):

    size = G.number_of_nodes()
    prior = G.graph['prior'] if 'prior' in G.graph else print(
        'You must specify a prior as attribute of G')
    gamma = G.graph['gamma'] if 'gamma' in G.graph else print(
        'You must specify spatial exponent gamma as attribute of G')
    size_x = G.graph['size_x'] if 'size_x' in G.graph else print(
        'You must specify size_x as attribute of G')

    if hyperparams is True or all is True:
        sigma = c = t = tau = True
        if prior == 'singlepl':
            tau = False
    if wnu is True or all is True:
        w0 = beta = n = u = x = True
        if prior == 'singlepl':
            beta = False
    if sigma is True:
        sigma_est = [init['sigma_init']
                     ] if 'sigma_init' in init else [float(np.random.rand(1))]
    else:
        sigma_est = [G.graph['sigma']]
    if c is True:
        c_est = [init['c_init']
                 ] if 'c_init' in init else [float(5 * np.random.rand(1) + 1)]
    else:
        c_est = [G.graph['c']]
    if t is True:
        t_est = [init['t_init']] if 't_init' in init else [
            float(np.random.gamma(a_t, 1 / b_t))
        ]
    else:
        t_est = [G.graph['t']]
    if prior == 'doublepl':
        if tau is True:
            tau_est = [init['tau_init']] if 'tau_init' in init else [
                float(5 * np.random.rand(1) + 1)
            ]
        else:
            tau_est = [G.graph['tau']]
    else:
        tau_est = [0]

    z_est = [(size * sigma_est[0] / t_est[0]) ** (1 / sigma_est[0])] if G.graph['prior'] == 'singlepl' else \
                 [(size * tau_est[0] * sigma_est[0] ** 2 / (t_est[0] * c_est[0] ** (sigma_est[0] * (tau_est[0] - 1)))) ** \
                 (1 / sigma_est[0])]

    if w0 is True:
        if 'w0_init' in init:
            w0_est = [init['w0_init']]
        else:
            g = np.random.gamma(1 - sigma_est[0], 1, size)
            unif = np.random.rand(size)
            w0_est = [
                np.multiply(
                    g,
                    np.power(((z_est[0] + c_est[0])**sigma_est[0]) *
                             (1 - unif) + (c_est[0]**sigma_est[0]) * unif,
                             -1 / sigma_est[0]))
            ]
    else:
        w0_est = [
            np.array([G.nodes[i]['w0'] for i in range(G.number_of_nodes())])
        ]
    if prior == 'doublepl' and beta is True:
        beta_est = [init['beta_init']] if 'beta_init' in init else [
            float(np.random.beta(sigma_est[0] * tau_est[0], 1))
        ]
    if prior == 'singlepl' or beta is False:
        beta_est = [np.array([G.nodes[i]['beta'] for i in range(G.number_of_nodes())])] if 'beta' in G.nodes[0] \
            else [np.ones((size))]
    if u is True:
        u_est = [init['u_init']] if 'u_init' in init else [
            tp.tpoissrnd(z_est[0] * w0_est[0])
        ]
    else:
        u_est = [
            np.array([G.nodes[i]['u'] for i in range(G.number_of_nodes())])
        ]
    if x is True:
        x_est = [init['x_init']
                 ] if 'x_init' in init else [size_x * np.random.rand(size)]
        p_ij_est = [aux.space_distance(x_est[-1], gamma)]
    else:
        if gamma != 0:
            x_est = [
                np.array([G.nodes[i]['x'] for i in range(G.number_of_nodes())])
            ]
            p_ij_est = [aux.space_distance(x_est[-1], gamma)]
        else:
            p_ij_est = [np.ones((size, size))]
    if 'ind' in G.graph:
        ind = G.graph['ind']
    else:
        ind = {k: [] for k in G.nodes}
        for i in G.nodes:
            for j in G.adj[i]:
                if j > i:
                    ind[i].append(j)
    if 'selfedge' in G.graph:
        selfedge = G.graph['selfedge']
    else:
        selfedge = [i in ind[i] for i in G.nodes]
        selfedge = list(compress(G.nodes, selfedge))
    if n is True:
        if 'n_init' in init:
            n_est = [init['n_init']]
        else:
            out_n = up.update_n(w0_est[0], G, size, p_ij_est[-1], ind,
                                selfedge)
            n_est = [out_n[0]]
    else:
        n_est = [G.graph['counts']]

    w_est = [np.exp(np.log(w0_est[0]) - np.log(beta_est[0]))]

    adj = n_est[-1] > 0

    log_post_param_est = [
        aux.log_post_params(prior, sigma_est[-1], c_est[-1], t_est[-1],
                            tau_est[-1], w0_est[-1], beta_est[-1], u_est[-1],
                            a_t, b_t)
    ]
    sum_n = np.array(
        csr_matrix.sum(n_est[-1], axis=0) +
        np.transpose(csr_matrix.sum(n_est[-1], axis=1)))[0]
    log_post_est = [
        aux.log_post_logwbeta_params(prior,
                                     sigma_est[-1],
                                     c_est[-1],
                                     t_est[-1],
                                     tau_est[-1],
                                     w_est[-1],
                                     w0_est[-1],
                                     beta_est[-1],
                                     n_est[-1],
                                     u_est[-1],
                                     p_ij_est[-1],
                                     a_t,
                                     b_t,
                                     gamma,
                                     sum_n,
                                     adj,
                                     log_post_par=log_post_param_est[-1])[0]
    ]
    print('log post initial', log_post_est[-1])

    accept_params = [0]
    accept_hmc = 0
    accept_distance = [0]
    rate = [0]
    rate_p = [0]
    step = 100
    nadapt = 1000

    sigma_prev = sigma_est[-1]
    c_prev = c_est[-1]
    t_prev = t_est[-1]
    tau_prev = tau_est[-1]
    w_prev = w_est[-1]
    w0_prev = w0_est[-1]
    beta_prev = beta_est[-1]
    n_prev = n_est[-1]
    if gamma != 0: x_prev = x_est[-1]
    p_ij_prev = p_ij_est[-1]
    u_prev = u_est[-1]
    z_prev = z_est[-1]

    p = adj.multiply(p_ij_est[-1])
    nlogp = coo_matrix.sum(n_est[-1].multiply(
        p._with_data(np.log(p.data), copy=True)))
    nlogw = sum(sum_n * np.log(w_est[-1]))
    wpw = sum(w_est[-1] * np.dot(p_ij_est[-1], w_est[-1]))
    uw0 = sum((u_est[-1] - 1) * np.log(w0_est[-1]))
    sumw0 = sum(np.log(w0_est[-1]))

    for i in range(iter):

        # update hyperparameters if at least one of them demands the update
        if sigma is True or c is True or t is True or tau is True:
            output_params = up.update_params(prior,
                                             sigma_prev,
                                             c_prev,
                                             t_prev,
                                             tau_prev,
                                             z_prev,
                                             w0_prev,
                                             beta_prev,
                                             u_prev,
                                             log_post_param_est[-1],
                                             accept_params[-1],
                                             sigma=sigma,
                                             c=c,
                                             t=t,
                                             tau=tau,
                                             sigma_sigma=sigma_sigma,
                                             sigma_c=sigma_c,
                                             sigma_t=sigma_t,
                                             sigma_tau=sigma_tau,
                                             a_t=a_t,
                                             b_t=b_t)
            sigma_prev = output_params[0]
            c_prev = output_params[1]
            t_prev = output_params[2]
            tau_prev = output_params[3]
            z_prev = output_params[4]
            accept_params.append(output_params[5])
            log_post_param_est.append(output_params[6])
            rate_p.append(output_params[7])
            if (i + 1) % save_every == 0 and i != 0:
                sigma_est.append(sigma_prev)
                c_est.append(c_prev)
                t_est.append(t_prev)
                tau_est.append(tau_prev)
                z_est.append(z_prev)
            if i % 1000 == 0:
                print('update hyperparams iteration ', i)
                print('acceptance rate hyperparams = ',
                      round(accept_params[-1] / (i + 1) * 100, 1), '%')
            if (i % step) == 0 and i != 0 and i < nburn:
                if sigma is True:
                    sigma_sigma = aux.tune(accept_params, sigma_sigma, step)
                if c is True:
                    sigma_c = aux.tune(accept_params, sigma_c, step)
                if t is True:
                    sigma_t = aux.tune(accept_params, sigma_t, step)
                if tau is True:
                    sigma_tau = aux.tune(accept_params, sigma_tau, step)

        # update w and beta if at least one of them is True
        if w0 is True:
            if accept_params[-1] == 0:
                log_post_est.append(log_post_est[-1])
            if accept_params[-1] == 1:
                temp = aux.log_post_logwbeta_params(
                    prior,
                    sigma_prev,
                    c_prev,
                    t_prev,
                    tau_prev,
                    w_prev,
                    w0_prev,
                    beta_prev,
                    n_prev,
                    u_prev,
                    p_ij_prev,
                    a_t,
                    b_t,
                    gamma,
                    sum_n,
                    adj,
                    log_post_par=log_post_param_est[-1],
                    nlogp=nlogp,
                    nlogw=nlogw,
                    wpw=wpw,
                    uw0=uw0,
                    sumw0=sumw0)
                log_post_est.append(temp[0])
            if w_inference == 'gibbs':
                output_gibbs = up.gibbs_w(w_prev, beta_prev, sigma_prev,
                                          c_prev, z_prev, u_prev, n_prev,
                                          p_ij_prev, gamma, sum_n)
                w_prev = output_gibbs[0]
                w0_prev = output_gibbs[1]
                log_post_param_est.append(
                    aux.log_post_params(prior, sigma_prev, c_prev, t_prev,
                                        tau_prev, w0_prev, beta_prev, u_prev,
                                        a_t, b_t))
                temp = aux.log_post_logwbeta_params(
                    prior,
                    sigma_prev,
                    c_prev,
                    t_prev,
                    tau_prev,
                    w_prev,
                    w0_prev,
                    beta_prev,
                    n_prev,
                    u_prev,
                    p_ij_prev,
                    a_t,
                    b_t,
                    gamma,
                    sum_n,
                    adj,
                    log_post=log_post_param_est[-1],
                    nlogp=nlogp)
                log_post_est.append(temp[0])
                ##
                nlogw = temp[2]
                wpw = temp[3]
                uw0 = temp[4]
                sumw0 = temp[5]
                ##
                if i % 1000 == 0 and i != 0:
                    print('update w (gibbs) iteration ', i)
            if w_inference == 'HMC':
                output_hmc = up.HMC_w(prior,
                                      w_prev,
                                      w0_prev,
                                      beta_prev,
                                      n_prev,
                                      u_prev,
                                      sigma_prev,
                                      c_prev,
                                      t_prev,
                                      tau_prev,
                                      z_prev,
                                      gamma,
                                      p_ij_prev,
                                      a_t,
                                      b_t,
                                      epsilon,
                                      R,
                                      accept_hmc,
                                      size,
                                      sum_n,
                                      adj,
                                      log_post_est[-1],
                                      log_post_param_est[-1],
                                      nlogp,
                                      nlogw,
                                      wpw,
                                      uw0,
                                      sumw0,
                                      update_beta=beta)
                w_prev = output_hmc[0]
                w0_prev = output_hmc[1]
                beta_prev = output_hmc[2]
                accept_hmc = output_hmc[3]
                rate.append(output_hmc[4])
                log_post_est.append(output_hmc[5])
                log_post_param_est.append(output_hmc[6])
                ##
                nlogw = output_hmc[7]
                wpw = output_hmc[8]
                uw0 = output_hmc[9]
                sumw0 = output_hmc[10]
                ##
                if i % 100 == 0 and i != 0:
                    # if i < nadapt:
                    if i >= step:
                        # epsilon = np.exp(np.log(epsilon) + 0.01 * (np.mean(rate) - 0.6))
                        epsilon = np.exp(
                            np.log(epsilon) + 0.01 *
                            (np.mean(rate[i - step:i]) - 0.6))
                if i % 1000 == 0:
                    print('update w and beta iteration ', i)
                    print('acceptance rate HMC = ',
                          round(accept_hmc / (i + 1) * 100, 1), '%')
                    print('epsilon = ', epsilon)
            if (i + 1) % save_every == 0 and i != 0:
                w_est.append(w_prev)
                w0_est.append(w0_prev)
                beta_est.append(beta_prev)

        # update n
        step_n = 1
        if n is True and (i + 1) % step_n == 0:
            n_prev = up.update_n(w_prev, G, size, p_ij_prev, ind, selfedge)
            sum_n = np.array(
                csr_matrix.sum(n_prev, axis=0) +
                np.transpose(csr_matrix.sum(n_prev, axis=1)))[0]
            log_post_param_est.append(log_post_param_est[-1])
            temp = aux.log_post_logwbeta_params(
                prior,
                sigma_prev,
                c_prev,
                t_prev,
                tau_prev,
                w_prev,
                w0_prev,
                beta_prev,
                n_prev,
                u_prev,
                p_ij_prev,
                a_t,
                b_t,
                gamma,
                sum_n,
                adj,
                log_post_par=log_post_param_est[-1],
                wpw=wpw,
                uw0=uw0,
                sumw0=sumw0)
            log_post_est.append(temp[0])
            ##
            nlogp = temp[1]
            nlogw = temp[2]
            ##

            if (i + 1) % save_every == 0 and i != 0:
                n_est.append(n_prev)
            if i % 1000 == 0:
                print('update n iteration ', i)

        # update u
        if u is True:
            u_prev = up.posterior_u(z_prev * w0_prev)
            log_post_param_est.append(
                aux.log_post_params(prior, sigma_prev, c_prev, t_prev,
                                    tau_prev, w0_prev, beta_prev, u_prev, a_t,
                                    b_t))
            temp = aux.log_post_logwbeta_params(
                prior,
                sigma_prev,
                c_prev,
                t_prev,
                tau_prev,
                w_prev,
                w0_prev,
                beta_prev,
                n_prev,
                u_prev,
                p_ij_prev,
                a_t,
                b_t,
                gamma,
                sum_n,
                adj,
                log_post_par=log_post_param_est[-1],
                nlogp=nlogp,
                nlogw=nlogw,
                wpw=wpw,
                sumw0=sumw0)
            log_post_est.append(temp[0])
            ##
            uw0 = temp[4]
            ##
            if (i + 1) % save_every == 0 and i != 0:
                u_est.append(u_prev)
            if i % 1000 == 0:
                print('update u iteration ', i)

        step_x = 1
        if x is True and (i + 1) % step_x == 0:
            out_x = up.update_x(x_prev, w_prev, gamma, p_ij_prev, n_prev,
                                sigma_x, accept_distance[-1], prior,
                                sigma_prev, c_prev, t_prev, tau_prev, w0_prev,
                                beta_prev, u_prev, a_t, b_t, sum_n, adj,
                                log_post_est[-1], log_post_param_est[-1],
                                index, nlogw, uw0, sumw0, nlogp, wpw)
            x_prev = out_x[0]
            p_ij_prev = out_x[1]
            accept_distance.append(out_x[2])
            log_post_est.append(out_x[3])
            ##
            nlogp = out_x[4]
            wpw = out_x[5]
            ##
            if (i + 1) % save_every == 0 and i != 0:
                p_ij_est.append(p_ij_prev)
                x_est.append(x_prev)
            if i % 1000 == 0:
                print('update x iteration ', i)
                print('acceptance rate x = ',
                      round(accept_distance[-1] * 100 * step_x / iter, 1), '%')
                print('sigma_x = ', sigma_x)
            if (i % (step / step_x)) == 0 and i != 0 and i < nburn:
                sigma_x = aux.tune(accept_distance, sigma_x,
                                   int(step / step_x))

    if gamma != 0:
        return w_est, w0_est, beta_est, sigma_est, c_est, t_est, tau_est, n_est, u_est, \
                log_post_param_est, log_post_est, p_ij_est, x_est
    else:
        return w_est, w0_est, beta_est, sigma_est, c_est, t_est, tau_est, n_est, u_est, \
                log_post_param_est, log_post_est, p_ij_est
Пример #12
0
    svSum = labelVector.sum()
    if (svSum == 0):
        return lil_matrix(shape=(1, len(labelVector)), dtype=np.float64)
    y = labelVector
    f = lgmres(ps, y, tol=1e-10)[0]
    return f


if (__name__ == '__main__'):
    adjMatrix = csr_matrix(
        np.matrix([[0, 1, 0, 0, 1], [1, 0, 1, 0, 0], [0, 1, 0, 1, 1],
                   [0, 0, 1, 0, 1], [1, 0, 0, 1, 0]]))
    label = np.zeros(5)
    label[0] = 1
    label[2] = 1
    label[1] = 1
    L = csgraph.laplacian(adjMatrix, normed=True)
    n = adjMatrix.shape[0]
    I = identity(n, dtype='int8', format='csr')
    # Parameter that weights smoothness versus loss.
    # Called "mu" in Shin et al 2007.
    #################################################################
    # Right now I am summing by one dimension (row) but we may have to sum and
    # average or something if the matrix is not symetric.
    #################################################################
    axisSum = coo_matrix.sum(np.abs(L), axis=0)
    sumMax = np.max(axisSum)
    diffusionParameter = (1 / float(sumMax))
    ps = (I + (diffusionParameter * L))
    print(sum((diffuse(label, ps))))