Пример #1
0
def test_diagonal():
    """Check for diagonal matrices.
    """
    rnd = np.random.RandomState(0)
    n = 100
    m = 4

    # Define the generalized eigenvalue problem Av = cBv
    # where (c, v) is a generalized eigenpair,
    # and where we choose A to be the diagonal matrix whose entries are 1..n
    # and where B is chosen to be the identity matrix.
    vals = np.arange(1, n+1, dtype=float)
    A = diags([vals], [0], (n, n))
    B = eye(n)

    # Let the preconditioner M be the inverse of A.
    M = diags([1./vals], [0], (n, n))

    # Pick random initial vectors.
    X = rnd.random((n, m))

    # Require that the returned eigenvectors be in the orthogonal complement
    # of the first few standard basis vectors.
    m_excluded = 3
    Y = np.eye(n, m_excluded)

    eigvals, vecs = lobpcg(A, X, B, M=M, Y=Y, tol=1e-4, maxiter=40, largest=False)

    assert_allclose(eigvals, np.arange(1+m_excluded, 1+m_excluded+m))
    _check_eigen(A, eigvals, vecs, rtol=1e-3, atol=1e-3)
Пример #2
0
def _check_fiedler(n, p):
    """Check the Fiedler vector computation.
    """
    # This is not necessarily the recommended way to find the Fiedler vector.
    col = np.zeros(n)
    col[1] = 1
    A = toeplitz(col)
    D = np.diag(A.sum(axis=1))
    L = D - A
    # Compute the full eigendecomposition using tricks, e.g.
    # http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
    tmp = np.pi * np.arange(n) / n
    analytic_w = 2 * (1 - np.cos(tmp))
    analytic_V = np.cos(np.outer(np.arange(n) + 1 / 2, tmp))
    _check_eigen(L, analytic_w, analytic_V)
    # Compute the full eigendecomposition using eigh.
    eigh_w, eigh_V = eigh(L)
    _check_eigen(L, eigh_w, eigh_V)
    # Check that the first eigenvalue is near zero and that the rest agree.
    assert_array_less(np.abs([eigh_w[0], analytic_w[0]]), 1e-14)
    assert_allclose(eigh_w[1:], analytic_w[1:])

    # Check small lobpcg eigenvalues.
    X = analytic_V[:, :p]
    lobpcg_w, lobpcg_V = lobpcg(L, X, largest=False)
    assert_equal(lobpcg_w.shape, (p, ))
    assert_equal(lobpcg_V.shape, (n, p))
    _check_eigen(L, lobpcg_w, lobpcg_V)
    assert_array_less(np.abs(np.min(lobpcg_w)), 1e-14)
    assert_allclose(np.sort(lobpcg_w)[1:], analytic_w[1:p])

    # Check large lobpcg eigenvalues.
    X = analytic_V[:, -p:]
    lobpcg_w, lobpcg_V = lobpcg(L, X, largest=True)
    assert_equal(lobpcg_w.shape, (p, ))
    assert_equal(lobpcg_V.shape, (n, p))
    _check_eigen(L, lobpcg_w, lobpcg_V)
    assert_allclose(np.sort(lobpcg_w), analytic_w[-p:])

    # Look for the Fiedler vector using good but not exactly correct guesses.
    fiedler_guess = np.concatenate((np.ones(n // 2), -np.ones(n - n // 2)))
    X = np.vstack((np.ones(n), fiedler_guess)).T
    lobpcg_w, _ = lobpcg(L, X, largest=False)
    # Mathematically, the smaller eigenvalue should be zero
    # and the larger should be the algebraic connectivity.
    lobpcg_w = np.sort(lobpcg_w)
    assert_allclose(lobpcg_w, analytic_w[:2], atol=1e-14)
Пример #3
0
def test_verbosity(tmpdir):
    """Check that nonzero verbosity level code runs.
    """
    rnd = np.random.RandomState(0)
    X = rnd.standard_normal((10, 10))
    A = X @ X.T
    Q = rnd.standard_normal((X.shape[0], 1))
    with pytest.warns(UserWarning, match="Exited at iteration"):
        _, _ = lobpcg(A, Q, maxiter=3, verbosityLevel=9)
Пример #4
0
def test_regression():
    """Check the eigenvalue of the identity matrix is one.
    """
    # https://mail.python.org/pipermail/scipy-user/2010-October/026944.html
    n = 10
    X = np.ones((n, 1))
    A = np.identity(n)
    w, _ = lobpcg(A, X)
    assert_allclose(w, [1])
Пример #5
0
def test_nonhermitian_warning(capsys):
    """Check the warning of a Ritz matrix being not Hermitian
    by feeding a non-Hermitian input matrix.
    Also check stdout since verbosityLevel=1 and lack of stderr.
    """
    n = 10
    X = np.arange(n * 2).reshape(n, 2).astype(np.float32)
    A = np.arange(n * n).reshape(n, n).astype(np.float32)
    with pytest.warns(UserWarning, match="Matrix gramA"):
        _, _ = lobpcg(A, X, verbosityLevel=1, maxiter=0)
    out, err = capsys.readouterr()  # Capture output
    assert out.startswith("Solving standard eigenvalue")  # Test stdout
    assert err == ''  # Test empty stderr
    # Make the matrix symmetric and the UserWarning dissappears.
    A += A.T
    _, _ = lobpcg(A, X, verbosityLevel=1, maxiter=0)
    out, err = capsys.readouterr()  # Capture output
    assert out.startswith("Solving standard eigenvalue")  # Test stdout
    assert err == ''  # Test empty stderr
Пример #6
0
def test_failure_to_run_iterations():
    """Check that the code exists gracefully without breaking. Issue #10974.
    """
    rnd = np.random.RandomState(0)
    X = rnd.standard_normal((100, 10))
    A = X @ X.T
    Q = rnd.standard_normal((X.shape[0], 4))
    with pytest.warns(UserWarning, match="Exited at iteration"):
        eigenvalues, _ = lobpcg(A, Q, maxiter=20)
    assert (np.max(eigenvalues) > 0)
Пример #7
0
def test_maxit():
    """Check lobpcg if maxit=10 runs 10 iterations
    if maxit=None runs 20 iterations (the default)
    by checking the size of the iteration history output, which should
    be the number of iterations plus 2 (initial and final values).
    """
    rnd = np.random.RandomState(0)
    n = 50
    m = 4
    vals = -np.arange(1, n + 1)
    A = diags([vals], [0], (n, n))
    A = A.astype(np.float32)
    X = rnd.standard_normal((n, m))
    X = X.astype(np.float32)
    with pytest.warns(UserWarning, match="Exited at iteration"):
        _, _, l_h = lobpcg(A, X, tol=1e-8, maxiter=10, retLambdaHistory=True)
    assert_allclose(np.shape(l_h)[0], 10 + 2)
    with pytest.warns(UserWarning, match="Exited at iteration"):
        _, _, l_h = lobpcg(A, X, tol=1e-8, retLambdaHistory=True)
    assert_allclose(np.shape(l_h)[0], 20 + 2)
Пример #8
0
def compare_solutions(A, B, m):
    """Check eig vs. lobpcg consistency.
    """
    n = A.shape[0]
    rnd = np.random.RandomState(0)
    V = rnd.random((n, m))
    X = orth(V)
    eigvals, _ = lobpcg(A, X, B=B, tol=1e-2, maxiter=50, largest=False)
    eigvals.sort()
    w, _ = eig(A, b=B)
    w.sort()
    assert_almost_equal(w[:int(m / 2)], eigvals[:int(m / 2)], decimal=2)
Пример #9
0
def test_eigs_consistency(n, atol):
    """Check eigs vs. lobpcg consistency.
    """
    vals = np.arange(1, n + 1, dtype=np.float64)
    A = spdiags(vals, 0, n, n)
    rnd = np.random.RandomState(0)
    X = rnd.random((n, 2))
    lvals, lvecs = lobpcg(A, X, largest=True, maxiter=100)
    vals, _ = eigs(A, k=2)

    _check_eigen(A, lvals, lvecs, atol=atol, rtol=0)
    assert_allclose(np.sort(vals), np.sort(lvals), atol=1e-14)
Пример #10
0
def test_random_initial_float32():
    """Check lobpcg in float32 for specific initial.
    """
    rnd = np.random.RandomState(0)
    n = 50
    m = 4
    vals = -np.arange(1, n + 1)
    A = diags([vals], [0], (n, n))
    A = A.astype(np.float32)
    X = rnd.random((n, m))
    X = X.astype(np.float32)
    eigvals, _ = lobpcg(A, X, tol=1e-3, maxiter=50, verbosityLevel=1)
    assert_allclose(eigvals, -np.arange(1, 1 + m), atol=1e-2)
Пример #11
0
def test_tolerance_float32():
    """Check lobpcg for attainable tolerance in float32.
    """
    rnd = np.random.RandomState(0)
    n = 50
    m = 3
    vals = -np.arange(1, n + 1)
    A = diags([vals], [0], (n, n))
    A = A.astype(np.float32)
    X = rnd.standard_normal((n, m))
    X = X.astype(np.float32)
    eigvals, _ = lobpcg(A, X, tol=1e-5, maxiter=50, verbosityLevel=0)
    assert_allclose(eigvals, -np.arange(1, 1 + m), atol=1.5e-5)
Пример #12
0
def test_hermitian():
    """Check complex-value Hermitian cases.
    """
    rnd = np.random.RandomState(0)

    sizes = [3, 10, 50]
    ks = [1, 3, 10, 50]
    gens = [True, False]

    for s, k, gen in itertools.product(sizes, ks, gens):
        if k > s:
            continue

        H = rnd.random((s, s)) + 1.j * rnd.random((s, s))
        H = 10 * np.eye(s) + H + H.T.conj()

        X = rnd.random((s, k))

        if not gen:
            B = np.eye(s)
            w, v = lobpcg(H, X, maxiter=5000)
            w0, _ = eigh(H)
        else:
            B = rnd.random((s, s)) + 1.j * rnd.random((s, s))
            B = 10 * np.eye(s) + B.dot(B.T.conj())
            w, v = lobpcg(H, X, B, maxiter=5000, largest=False)
            w0, _ = eigh(H, B)

        for wx, vx in zip(w, v.T):
            # Check eigenvector
            assert_allclose(np.linalg.norm(H.dot(vx) - B.dot(vx) * wx) /
                            np.linalg.norm(H.dot(vx)),
                            0,
                            atol=5e-4,
                            rtol=0)

            # Compare eigenvalues
            j = np.argmin(abs(w0 - wx))
            assert_allclose(wx, w0[j], rtol=1e-4)
Пример #13
0
def test_diagonal_data_types():
    """Check lobpcg for diagonal matrices for all matrix types.
    """
    rnd = np.random.RandomState(0)
    n = 40
    m = 4
    # Define the generalized eigenvalue problem Av = cBv
    # where (c, v) is a generalized eigenpair,
    # and where we choose A  and B to be diagonal.
    vals = np.arange(1, n + 1)

    list_sparse_format = ['bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil']
    sparse_formats = len(list_sparse_format)
    for s_f_i, s_f in enumerate(list_sparse_format):

        As64 = diags([vals * vals], [0], (n, n), format=s_f)
        As32 = As64.astype(np.float32)
        Af64 = As64.toarray()
        Af32 = Af64.astype(np.float32)
        listA = [Af64, As64, Af32, As32]

        Bs64 = diags([vals], [0], (n, n), format=s_f)
        Bf64 = Bs64.toarray()
        listB = [Bf64, Bs64]

        # Define the preconditioner function as LinearOperator.
        Ms64 = diags([1. / vals], [0], (n, n), format=s_f)

        def Ms64precond(x):
            return Ms64 @ x

        Ms64precondLO = LinearOperator(matvec=Ms64precond,
                                       matmat=Ms64precond,
                                       shape=(n, n),
                                       dtype=float)
        Mf64 = Ms64.toarray()

        def Mf64precond(x):
            return Mf64 @ x

        Mf64precondLO = LinearOperator(matvec=Mf64precond,
                                       matmat=Mf64precond,
                                       shape=(n, n),
                                       dtype=float)
        Ms32 = Ms64.astype(np.float32)

        def Ms32precond(x):
            return Ms32 @ x

        Ms32precondLO = LinearOperator(matvec=Ms32precond,
                                       matmat=Ms32precond,
                                       shape=(n, n),
                                       dtype=np.float32)
        Mf32 = Ms32.toarray()

        def Mf32precond(x):
            return Mf32 @ x

        Mf32precondLO = LinearOperator(matvec=Mf32precond,
                                       matmat=Mf32precond,
                                       shape=(n, n),
                                       dtype=np.float32)
        listM = [
            None, Ms64precondLO, Mf64precondLO, Ms32precondLO, Mf32precondLO
        ]

        # Setup matrix of the initial approximation to the eigenvectors
        # (cannot be sparse array).
        Xf64 = rnd.random((n, m))
        Xf32 = Xf64.astype(np.float32)
        listX = [Xf64, Xf32]

        # Require that the returned eigenvectors be in the orthogonal complement
        # of the first few standard basis vectors (cannot be sparse array).
        m_excluded = 3
        Yf64 = np.eye(n, m_excluded, dtype=float)
        Yf32 = np.eye(n, m_excluded, dtype=np.float32)
        listY = [Yf64, Yf32]

        tests = list(itertools.product(listA, listB, listM, listX, listY))
        # This is one of the slower tests because there are >1,000 configs
        # to test here, instead of checking product of all input, output types
        # test each configuration for the first sparse format, and then
        # for one additional sparse format. this takes 2/7=30% as long as
        # testing all configurations for all sparse formats.
        if s_f_i > 0:
            tests = tests[s_f_i - 1::sparse_formats - 1]

        for A, B, M, X, Y in tests:
            eigvals, _ = lobpcg(A,
                                X,
                                B=B,
                                M=M,
                                Y=Y,
                                tol=1e-4,
                                maxiter=100,
                                largest=False)
            assert_allclose(eigvals,
                            np.arange(1 + m_excluded, 1 + m_excluded + m))
Пример #14
0
def test_diagonal(n, m, m_excluded):
    """Test ``m - m_excluded`` eigenvalues and eigenvectors of
    diagonal matrices of the size ``n`` varying matrix formats:
    dense array, spare matrix, and ``LinearOperator`` for both
    matrixes in the generalized eigenvalue problem ``Av = cBv``
    and for the preconditioner.
    """
    rnd = np.random.RandomState(0)

    # Define the generalized eigenvalue problem Av = cBv
    # where (c, v) is a generalized eigenpair,
    # and where we choose A to be the diagonal matrix whose entries are 1..n
    # and where B is chosen to be the identity matrix.
    vals = np.arange(1, n + 1, dtype=float)
    A_s = diags([vals], [0], (n, n))
    A_a = A_s.toarray()

    def A_f(x):
        return A_s @ x

    A_lo = LinearOperator(matvec=A_f, matmat=A_f, shape=(n, n), dtype=float)

    B_a = eye(n)
    B_s = csr_matrix(B_a)

    def B_f(x):
        return B_a @ x

    B_lo = LinearOperator(matvec=B_f, matmat=B_f, shape=(n, n), dtype=float)

    # Let the preconditioner M be the inverse of A.
    M_s = diags([1. / vals], [0], (n, n))
    M_a = M_s.toarray()

    def M_f(x):
        return M_s @ x

    M_lo = LinearOperator(matvec=M_f, matmat=M_f, shape=(n, n), dtype=float)

    # Pick random initial vectors.
    X = rnd.normal(size=(n, m))

    # Require that the returned eigenvectors be in the orthogonal complement
    # of the first few standard basis vectors.
    if m_excluded > 0:
        Y = np.eye(n, m_excluded)
    else:
        Y = None

    for A in [A_a, A_s, A_lo]:
        for B in [B_a, B_s, B_lo]:
            for M in [M_a, M_s, M_lo]:
                eigvals, vecs = lobpcg(A,
                                       X,
                                       B,
                                       M=M,
                                       Y=Y,
                                       maxiter=40,
                                       largest=False)

                assert_allclose(eigvals,
                                np.arange(1 + m_excluded, 1 + m_excluded + m))
                _check_eigen(A, eigvals, vecs, rtol=1e-3, atol=1e-3)
Пример #15
0
def svds(A,
         k=6,
         ncv=None,
         tol=0,
         which='LM',
         v0=None,
         maxiter=None,
         return_singular_vectors=True,
         solver='arpack',
         random_state=None,
         options=None):
    """
    Partial singular value decomposition of a sparse matrix.

    Compute the largest or smallest `k` singular values and corresponding
    singular vectors of a sparse matrix `A`. The order in which the singular
    values are returned is not guaranteed.

    In the descriptions below, let ``M, N = A.shape``.

    Parameters
    ----------
    A : sparse matrix or LinearOperator
        Matrix to decompose.
    k : int, default: 6
        Number of singular values and singular vectors to compute.
        Must satisfy ``1 <= k <= kmax``, where ``kmax=min(M, N)`` for
        ``solver='propack'`` and ``kmax=min(M, N) - 1`` otherwise.
    ncv : int, optional
        When ``solver='arpack'``, this is the number of Lanczos vectors
        generated. See :ref:`'arpack' <sparse.linalg.svds-arpack>` for details.
        When ``solver='lobpcg'`` or ``solver='propack'``, this parameter is
        ignored.
    tol : float, optional
        Tolerance for singular values. Zero (default) means machine precision.
    which : {'LM', 'SM'}
        Which `k` singular values to find: either the largest magnitude ('LM')
        or smallest magnitude ('SM') singular values.
    v0 : ndarray, optional
        The starting vector for iteration; see method-specific
        documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>`,
        :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`), or
        :ref:`'propack' <sparse.linalg.svds-propack>` for details.
    maxiter : int, optional
        Maximum number of iterations; see method-specific
        documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>`,
        :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`), or
        :ref:`'propack' <sparse.linalg.svds-propack>` for details.
    return_singular_vectors : {True, False, "u", "vh"}
        Singular values are always computed and returned; this parameter
        controls the computation and return of singular vectors.

        - ``True``: return singular vectors.
        - ``False``: do not return singular vectors.
        - ``"u"``: if ``M <= N``, compute only the left singular vectors and
          return ``None`` for the right singular vectors. Otherwise, compute
          all singular vectors.
        - ``"vh"``: if ``M > N``, compute only the right singular vectors and
          return ``None`` for the left singular vectors. Otherwise, compute
          all singular vectors.

        If ``solver='propack'``, the option is respected regardless of the
        matrix shape.

    solver :  {'arpack', 'propack', 'lobpcg'}, optional
            The solver used.
            :ref:`'arpack' <sparse.linalg.svds-arpack>`,
            :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`, and
            :ref:`'propack' <sparse.linalg.svds-propack>` are supported.
            Default: `'arpack'`.
    random_state : {None, int, `numpy.random.Generator`,
                    `numpy.random.RandomState`}, optional

        Pseudorandom number generator state used to generate resamples.

        If `random_state` is ``None`` (or `np.random`), the
        `numpy.random.RandomState` singleton is used.
        If `random_state` is an int, a new ``RandomState`` instance is used,
        seeded with `random_state`.
        If `random_state` is already a ``Generator`` or ``RandomState``
        instance then that instance is used.
    options : dict, optional
        A dictionary of solver-specific options. No solver-specific options
        are currently supported; this parameter is reserved for future use.

    Returns
    -------
    u : ndarray, shape=(M, k)
        Unitary matrix having left singular vectors as columns.
    s : ndarray, shape=(k,)
        The singular values.
    vh : ndarray, shape=(k, N)
        Unitary matrix having right singular vectors as rows.

    Notes
    -----
    This is a naive implementation using ARPACK or LOBPCG as an eigensolver
    on ``A.conj().T @ A`` or ``A @ A.conj().T``, depending on which one is more
    efficient.

    Examples
    --------
    Construct a matrix ``A`` from singular values and vectors.

    >>> from scipy.stats import ortho_group
    >>> from scipy.sparse import csc_matrix, diags
    >>> from scipy.sparse.linalg import svds
    >>> rng = np.random.default_rng()
    >>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng))
    >>> s = [0.0001, 0.001, 3, 4, 5]  # singular values
    >>> u = orthogonal[:, :5]         # left singular vectors
    >>> vT = orthogonal[:, 5:].T      # right singular vectors
    >>> A = u @ diags(s) @ vT

    With only three singular values/vectors, the SVD approximates the original
    matrix.

    >>> u2, s2, vT2 = svds(A, k=3)
    >>> A2 = u2 @ np.diag(s2) @ vT2
    >>> np.allclose(A2, A.toarray(), atol=1e-3)
    True

    With all five singular values/vectors, we can reproduce the original
    matrix.

    >>> u3, s3, vT3 = svds(A, k=5)
    >>> A3 = u3 @ np.diag(s3) @ vT3
    >>> np.allclose(A3, A.toarray())
    True

    The singular values match the expected singular values, and the singular
    vectors are as expected up to a difference in sign.

    >>> (np.allclose(s3, s) and
    ...  np.allclose(np.abs(u3), np.abs(u.toarray())) and
    ...  np.allclose(np.abs(vT3), np.abs(vT.toarray())))
    True

    The singular vectors are also orthogonal.
    >>> (np.allclose(u3.T @ u3, np.eye(5)) and
    ...  np.allclose(vT3 @ vT3.T, np.eye(5)))
    True

    """
    rs_was_None = random_state is None  # avoid changing v0 for arpack/lobpcg

    args = _iv(A, k, ncv, tol, which, v0, maxiter, return_singular_vectors,
               solver, random_state)
    (A, k, ncv, tol, which, v0, maxiter, return_singular_vectors, solver,
     random_state) = args

    largest = (which == 'LM')
    n, m = A.shape

    if n > m:
        X_dot = A.matvec
        X_matmat = A.matmat
        XH_dot = A.rmatvec
        XH_mat = A.rmatmat
    else:
        X_dot = A.rmatvec
        X_matmat = A.rmatmat
        XH_dot = A.matvec
        XH_mat = A.matmat

        dtype = getattr(A, 'dtype', None)
        if dtype is None:
            dtype = A.dot(np.zeros([m, 1])).dtype

    def matvec_XH_X(x):
        return XH_dot(X_dot(x))

    def matmat_XH_X(x):
        return XH_mat(X_matmat(x))

    XH_X = LinearOperator(matvec=matvec_XH_X,
                          dtype=A.dtype,
                          matmat=matmat_XH_X,
                          shape=(min(A.shape), min(A.shape)))

    # Get a low rank approximation of the implicitly defined gramian matrix.
    # This is not a stable way to approach the problem.
    if solver == 'lobpcg':

        if k == 1 and v0 is not None:
            X = np.reshape(v0, (-1, 1))
        else:
            if rs_was_None:
                X = np.random.RandomState(52).randn(min(A.shape), k)
            else:
                X = random_state.uniform(size=(min(A.shape), k))

        eigvals, eigvec = lobpcg(
            XH_X,
            X,
            tol=tol**2,
            maxiter=maxiter,
            largest=largest,
        )

    elif solver == 'propack':
        jobu = return_singular_vectors in {True, 'u'}
        jobv = return_singular_vectors in {True, 'vh'}
        irl_mode = (which == 'SM')
        res = _svdp(A,
                    k=k,
                    tol=tol**2,
                    which=which,
                    maxiter=None,
                    compute_u=jobu,
                    compute_v=jobv,
                    irl_mode=irl_mode,
                    kmax=maxiter,
                    v0=v0,
                    random_state=random_state)

        u, s, vh, _ = res  # but we'll ignore bnd, the last output

        # PROPACK order appears to be largest first. `svds` output order is not
        # guaranteed, according to documentation, but for ARPACK and LOBPCG
        # they actually are ordered smallest to largest, so reverse for
        # consistency.
        s = s[::-1]
        u = u[:, ::-1]
        vh = vh[::-1]

        u = u if jobu else None
        vh = vh if jobv else None

        if return_singular_vectors:
            return u, s, vh
        else:
            return s

    elif solver == 'arpack' or solver is None:
        if v0 is None and not rs_was_None:
            v0 = random_state.uniform(size=(min(A.shape), ))
        eigvals, eigvec = eigsh(XH_X,
                                k=k,
                                tol=tol**2,
                                maxiter=maxiter,
                                ncv=ncv,
                                which=which,
                                v0=v0)

    # Gramian matrices have real non-negative eigenvalues.
    eigvals = np.maximum(eigvals.real, 0)

    # Use the sophisticated detection of small eigenvalues from pinvh.
    t = eigvec.dtype.char.lower()
    factor = {'f': 1E3, 'd': 1E6}
    cond = factor[t] * np.finfo(t).eps
    cutoff = cond * np.max(eigvals)

    # Get a mask indicating which eigenpairs are not degenerately tiny,
    # and create the re-ordered array of thresholded singular values.
    above_cutoff = (eigvals > cutoff)
    nlarge = above_cutoff.sum()
    nsmall = k - nlarge
    slarge = np.sqrt(eigvals[above_cutoff])
    s = np.zeros_like(eigvals)
    s[:nlarge] = slarge
    if not return_singular_vectors:
        return np.sort(s)

    if n > m:
        vlarge = eigvec[:, above_cutoff]
        ularge = (X_matmat(vlarge) /
                  slarge if return_singular_vectors != 'vh' else None)
        vhlarge = _herm(vlarge)
    else:
        ularge = eigvec[:, above_cutoff]
        vhlarge = (_herm(X_matmat(ularge) /
                         slarge) if return_singular_vectors != 'u' else None)

    u = (_augmented_orthonormal_cols(ularge, nsmall, random_state)
         if ularge is not None else None)
    vh = (_augmented_orthonormal_rows(vhlarge, nsmall, random_state)
          if vhlarge is not None else None)

    indexes_sorted = np.argsort(s)
    s = s[indexes_sorted]
    if u is not None:
        u = u[:, indexes_sorted]
    if vh is not None:
        vh = vh[indexes_sorted]

    return u, s, vh
Пример #16
0
def svds(A,
         k=6,
         ncv=None,
         tol=0,
         which='LM',
         v0=None,
         maxiter=None,
         return_singular_vectors=True,
         solver='arpack',
         random_state=None,
         options=None):
    """
    Partial singular value decomposition of a sparse matrix.

    Compute the largest or smallest `k` singular values and corresponding
    singular vectors of a sparse matrix `A`. The order in which the singular
    values are returned is not guaranteed.

    In the descriptions below, let ``M, N = A.shape``.

    Parameters
    ----------
    A : ndarray, sparse matrix, or LinearOperator
        Matrix to decompose of a floating point numeric dtype.
    k : int, default: 6
        Number of singular values and singular vectors to compute.
        Must satisfy ``1 <= k <= kmax``, where ``kmax=min(M, N)`` for
        ``solver='propack'`` and ``kmax=min(M, N) - 1`` otherwise.
    ncv : int, optional
        When ``solver='arpack'``, this is the number of Lanczos vectors
        generated. See :ref:`'arpack' <sparse.linalg.svds-arpack>` for details.
        When ``solver='lobpcg'`` or ``solver='propack'``, this parameter is
        ignored.
    tol : float, optional
        Tolerance for singular values. Zero (default) means machine precision.
    which : {'LM', 'SM'}
        Which `k` singular values to find: either the largest magnitude ('LM')
        or smallest magnitude ('SM') singular values.
    v0 : ndarray, optional
        The starting vector for iteration; see method-specific
        documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>`,
        :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`), or
        :ref:`'propack' <sparse.linalg.svds-propack>` for details.
    maxiter : int, optional
        Maximum number of iterations; see method-specific
        documentation (:ref:`'arpack' <sparse.linalg.svds-arpack>`,
        :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`), or
        :ref:`'propack' <sparse.linalg.svds-propack>` for details.
    return_singular_vectors : {True, False, "u", "vh"}
        Singular values are always computed and returned; this parameter
        controls the computation and return of singular vectors.

        - ``True``: return singular vectors.
        - ``False``: do not return singular vectors.
        - ``"u"``: if ``M <= N``, compute only the left singular vectors and
          return ``None`` for the right singular vectors. Otherwise, compute
          all singular vectors.
        - ``"vh"``: if ``M > N``, compute only the right singular vectors and
          return ``None`` for the left singular vectors. Otherwise, compute
          all singular vectors.

        If ``solver='propack'``, the option is respected regardless of the
        matrix shape.

    solver :  {'arpack', 'propack', 'lobpcg'}, optional
            The solver used.
            :ref:`'arpack' <sparse.linalg.svds-arpack>`,
            :ref:`'lobpcg' <sparse.linalg.svds-lobpcg>`, and
            :ref:`'propack' <sparse.linalg.svds-propack>` are supported.
            Default: `'arpack'`.
    random_state : {None, int, `numpy.random.Generator`,
                    `numpy.random.RandomState`}, optional

        Pseudorandom number generator state used to generate resamples.

        If `random_state` is ``None`` (or `np.random`), the
        `numpy.random.RandomState` singleton is used.
        If `random_state` is an int, a new ``RandomState`` instance is used,
        seeded with `random_state`.
        If `random_state` is already a ``Generator`` or ``RandomState``
        instance then that instance is used.
    options : dict, optional
        A dictionary of solver-specific options. No solver-specific options
        are currently supported; this parameter is reserved for future use.

    Returns
    -------
    u : ndarray, shape=(M, k)
        Unitary matrix having left singular vectors as columns.
    s : ndarray, shape=(k,)
        The singular values.
    vh : ndarray, shape=(k, N)
        Unitary matrix having right singular vectors as rows.

    Notes
    -----
    This is a naive implementation using ARPACK or LOBPCG as an eigensolver
    on ``A.conj().T @ A`` or ``A @ A.conj().T``, depending on which one is more
    efficient, followed by the Rayleigh-Ritz method as postprocessing; see
    https://w.wiki/4zms

    Alternatively, the PROPACK solver can be called. ``form="array"``

    Choices of the input matrix ``A`` numeric dtype may be limited.
    Only ``solver="lobpcg"`` supports all floating point dtypes
    real: 'np.single', 'np.double', 'np.longdouble' and
    complex: 'np.csingle', 'np.cdouble', 'np.clongdouble'.
    The ``solver="arpack"`` supports only
    'np.single', 'np.double', and 'np.cdouble'.

    Examples
    --------
    Construct a matrix ``A`` from singular values and vectors.

    >>> from scipy.stats import ortho_group
    >>> from scipy.sparse import csc_matrix, diags
    >>> from scipy.sparse.linalg import svds
    >>> rng = np.random.default_rng()
    >>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng))
    >>> s = [0.0001, 0.001, 3, 4, 5]  # singular values
    >>> u = orthogonal[:, :5]         # left singular vectors
    >>> vT = orthogonal[:, 5:].T      # right singular vectors
    >>> A = u @ diags(s) @ vT

    With only three singular values/vectors, the SVD approximates the original
    matrix.

    >>> u2, s2, vT2 = svds(A, k=3)
    >>> A2 = u2 @ np.diag(s2) @ vT2
    >>> np.allclose(A2, A.toarray(), atol=1e-3)
    True

    With all five singular values/vectors, we can reproduce the original
    matrix.

    >>> u3, s3, vT3 = svds(A, k=5)
    >>> A3 = u3 @ np.diag(s3) @ vT3
    >>> np.allclose(A3, A.toarray())
    True

    The singular values match the expected singular values, and the singular
    vectors are as expected up to a difference in sign.

    >>> (np.allclose(s3, s) and
    ...  np.allclose(np.abs(u3), np.abs(u.toarray())) and
    ...  np.allclose(np.abs(vT3), np.abs(vT.toarray())))
    True

    The singular vectors are also orthogonal.
    >>> (np.allclose(u3.T @ u3, np.eye(5)) and
    ...  np.allclose(vT3 @ vT3.T, np.eye(5)))
    True

    """
    rs_was_None = random_state is None  # avoid changing v0 for arpack/lobpcg

    args = _iv(A, k, ncv, tol, which, v0, maxiter, return_singular_vectors,
               solver, random_state)
    (A, k, ncv, tol, which, v0, maxiter, return_singular_vectors, solver,
     random_state) = args

    largest = (which == 'LM')
    n, m = A.shape

    if n > m:
        X_dot = A.matvec
        X_matmat = A.matmat
        XH_dot = A.rmatvec
        XH_mat = A.rmatmat
        transpose = False
    else:
        X_dot = A.rmatvec
        X_matmat = A.rmatmat
        XH_dot = A.matvec
        XH_mat = A.matmat
        transpose = True

        dtype = getattr(A, 'dtype', None)
        if dtype is None:
            dtype = A.dot(np.zeros([m, 1])).dtype

    def matvec_XH_X(x):
        return XH_dot(X_dot(x))

    def matmat_XH_X(x):
        return XH_mat(X_matmat(x))

    XH_X = LinearOperator(matvec=matvec_XH_X,
                          dtype=A.dtype,
                          matmat=matmat_XH_X,
                          shape=(min(A.shape), min(A.shape)))

    # Get a low rank approximation of the implicitly defined gramian matrix.
    # This is not a stable way to approach the problem.
    if solver == 'lobpcg':

        if k == 1 and v0 is not None:
            X = np.reshape(v0, (-1, 1))
        else:
            if rs_was_None:
                X = np.random.RandomState(52).randn(min(A.shape), k)
            else:
                X = random_state.uniform(size=(min(A.shape), k))

        _, eigvec = lobpcg(XH_X,
                           X,
                           tol=tol**2,
                           maxiter=maxiter,
                           largest=largest)
        # lobpcg does not guarantee exactly orthonormal eigenvectors
        eigvec, _ = np.linalg.qr(eigvec)

    elif solver == 'propack':
        if not HAS_PROPACK:
            raise ValueError("`solver='propack'` is opt-in due "
                             "to potential issues on Windows, "
                             "it can be enabled by setting the "
                             "`SCIPY_USE_PROPACK` environment "
                             "variable before importing scipy")
        jobu = return_singular_vectors in {True, 'u'}
        jobv = return_singular_vectors in {True, 'vh'}
        irl_mode = (which == 'SM')
        res = _svdp(A,
                    k=k,
                    tol=tol**2,
                    which=which,
                    maxiter=None,
                    compute_u=jobu,
                    compute_v=jobv,
                    irl_mode=irl_mode,
                    kmax=maxiter,
                    v0=v0,
                    random_state=random_state)

        u, s, vh, _ = res  # but we'll ignore bnd, the last output

        # PROPACK order appears to be largest first. `svds` output order is not
        # guaranteed, according to documentation, but for ARPACK and LOBPCG
        # they actually are ordered smallest to largest, so reverse for
        # consistency.
        s = s[::-1]
        u = u[:, ::-1]
        vh = vh[::-1]

        u = u if jobu else None
        vh = vh if jobv else None

        if return_singular_vectors:
            return u, s, vh
        else:
            return s

    elif solver == 'arpack' or solver is None:
        if v0 is None and not rs_was_None:
            v0 = random_state.uniform(size=(min(A.shape), ))
        _, eigvec = eigsh(XH_X,
                          k=k,
                          tol=tol**2,
                          maxiter=maxiter,
                          ncv=ncv,
                          which=which,
                          v0=v0)

    Av = X_matmat(eigvec)
    if not return_singular_vectors:
        s = svd(Av, compute_uv=False, overwrite_a=True)
        return s[::-1]

    # compute the left singular vectors of X and update the right ones
    # accordingly
    u, s, vh = svd(Av, full_matrices=False, overwrite_a=True)
    u = u[:, ::-1]
    s = s[::-1]
    vh = vh[::-1]

    jobu = return_singular_vectors in {True, 'u'}
    jobv = return_singular_vectors in {True, 'vh'}

    if transpose:
        u_tmp = eigvec @ _herm(vh) if jobu else None
        vh = _herm(u) if jobv else None
        u = u_tmp
    else:
        if not jobu:
            u = None
        vh = vh @ _herm(eigvec) if jobv else None

    return u, s, vh