Пример #1
0
 def test_norm(self, count_matrix_dataset, vectorizer):
     """Normalization test."""
     _, x, y = count_matrix_dataset
     v = vectorizer(norm="l2")
     v.fit(x, y)
     matrix = v.transform(x)
     norm = sp_norm(matrix, axis=1)
     np.testing.assert_allclose(np.mean(norm), 1.)
Пример #2
0
 def norm(self):
     if self.isnone:
         return None
     if self.mode == MODE_NP or (self.mode == MODE_SP
                                 and self.type == 'vector'):
         return np_norm(self.x)
     if self.mode == MODE_TT:
         return self.x.norm()
     if self.mode == MODE_SP and self.type == 'matrix':
         return sp_norm(self.x)
Пример #3
0
 def compute_cosine_similarity(
         sentence_vector: Union[np.ndarray, sp_sp.spmatrix],
         sentence_vector2: Union[np.ndarray, sp_sp.spmatrix]) -> float:
     """
     Params:
         - sentence_vector: sentence vector
         - sentence_vector2: sentence vector2
     returns: similarity score of the two sentences
     """
     score = sentence_vector @ (sentence_vector2.transpose())
     if isinstance(sentence_vector, sp_sp.spmatrix) and \
             isinstance(sentence_vector2, sp_sp.spmatrix):
         score = score.todense()[0, 0]
         nrm, nrm2 = sp_norm(sentence_vector), sp_norm(sentence_vector2)
         score = score / (nrm * nrm2) if nrm * nrm2 > 0 else 0
     else:
         nrm, nrm2 = norm(sentence_vector), norm(sentence_vector2)
         score = score / (nrm * nrm2) if nrm * nrm2 > 0 else 0
     return score
Пример #4
0
 def _get_error(self, rec, test_matrix, norm_ord=2):
     total_error = 0
     test_users = test_matrix.shape[0]
     for i in range(test_users):
         vec = test_matrix.getrow(i)
         dropped_vec = self._drop_entries(vec, 0.25)
         estimated_vec = rec.get_estimated_vector(dropped_vec)
         total_error += sp_norm(vec - estimated_vec, ord=norm_ord,
                                axis=0)[0]
     return total_error
Пример #5
0
from oppgave4c import oppgave4c

y4_c = oppgave4c()

E = 1.3 * 10**10
I = (0.3 * 0.03**3) / 12
f = -480 * 0.3 * 0.03 * 9.81
# Regner ut vektoren med lengde 10
y4_e = (f / (E * I)) * ones((10, 1))

forward_error = norm(y4_e - y4_c, ord=inf)
rel_forward_error = forward_error / norm(y4_e, ord=inf)
# Antar at den relative bakoverfeilen er 2^-52
rel_backwards_error = 2**(-52)
# Feilforstørringen er relativ foroverfeil delt på relativ bakoverfeil
error_magnification = rel_forward_error / rel_backwards_error

# Lager matrisen fra oppgave 2
A = lagA(10)
# Konverterer matrisen til en 'sparse matrix' for å inverse den
A = csc_matrix(A)
A_Invers = inv(A)
# Kondisjonstallet
cond_A = sp_norm(A, ord=inf) * sp_norm(A_Invers, ord=inf)

# Printer ut svarene
print("Foroverfeil: ", forward_error)
print("Relativ foroverfeil:", rel_forward_error)
print("Feilforstørring:", error_magnification)
print("Kondisjonstall for A:", cond_A)