def lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=None, largest=True, verbosityLevel=0, retLambdaHistory=False, retResidualNormsHistory=False): """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. Parameters ---------- A : {sparse matrix, dense matrix, LinearOperator} The symmetric linear operator of the problem, usually a sparse matrix. Often called the "stiffness matrix". X : ndarray, float32 or float64 Initial approximation to the ``k`` eigenvectors (non-sparse). If `A` has ``shape=(n,n)`` then `X` should have shape ``shape=(n,k)``. B : {dense matrix, sparse matrix, LinearOperator}, optional The right hand side operator in a generalized eigenproblem. By default, ``B = Identity``. Often called the "mass matrix". M : {dense matrix, sparse matrix, LinearOperator}, optional Preconditioner to `A`; by default ``M = Identity``. `M` should approximate the inverse of `A`. Y : ndarray, float32 or float64, optional n-by-sizeY matrix of constraints (non-sparse), sizeY < n The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank. tol : scalar, optional Solver tolerance (stopping criterion). The default is ``tol=n*sqrt(eps)``. maxiter : int, optional Maximum number of iterations. The default is ``maxiter = 20``. largest : bool, optional When True, solve for the largest eigenvalues, otherwise the smallest. verbosityLevel : int, optional Controls solver output. The default is ``verbosityLevel=0``. retLambdaHistory : bool, optional Whether to return eigenvalue history. Default is False. retResidualNormsHistory : bool, optional Whether to return history of residual norms. Default is False. Returns ------- w : ndarray Array of ``k`` eigenvalues v : ndarray An array of ``k`` eigenvectors. `v` has the same shape as `X`. lambdas : list of ndarray, optional The eigenvalue history, if `retLambdaHistory` is True. rnorms : list of ndarray, optional The history of residual norms, if `retResidualNormsHistory` is True. Notes ----- If both ``retLambdaHistory`` and ``retResidualNormsHistory`` are True, the return tuple has the following format ``(lambda, V, lambda history, residual norms history)``. In the following ``n`` denotes the matrix size and ``m`` the number of required eigenvalues (smallest or largest). The LOBPCG code internally solves eigenproblems of the size ``3m`` on every iteration by calling the "standard" dense eigensolver, so if ``m`` is not small enough compared to ``n``, it does not make sense to call the LOBPCG code, but rather one should use the "standard" eigensolver, e.g. numpy or scipy function in this case. If one calls the LOBPCG algorithm for ``5m > n``, it will most likely break internally, so the code tries to call the standard function instead. It is not that ``n`` should be large for the LOBPCG to work, but rather the ratio ``n / m`` should be large. It you call LOBPCG with ``m=1`` and ``n=10``, it works though ``n`` is small. The method is intended for extremely large ``n / m``, see e.g., reference [28] in https://arxiv.org/abs/0705.2626 The convergence speed depends basically on two factors: 1. How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to vary ``m`` to make this better. 2. How well conditioned the problem is. This can be changed by using proper preconditioning. For example, a rod vibration test problem (under tests directory) is ill-conditioned for large ``n``, so convergence will be slow, unless efficient preconditioning is used. For this specific problem, a good simple preconditioner function would be a linear solve for `A`, which is easy to code since A is tridiagonal. References ---------- .. [1] A. V. Knyazev (2001), Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method. SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124 .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc. https://arxiv.org/abs/0705.2626 .. [3] A. V. Knyazev's C and MATLAB implementations: https://bitbucket.org/joseroman/blopex Examples -------- Solve ``A x = lambda x`` with constraints and preconditioning. >>> import numpy as np >>> from scipy.sparse import spdiags, issparse >>> from scipy.sparse.linalg import lobpcg, LinearOperator >>> n = 100 >>> vals = np.arange(1, n + 1) >>> A = spdiags(vals, 0, n, n) >>> A.toarray() array([[ 1., 0., 0., ..., 0., 0., 0.], [ 0., 2., 0., ..., 0., 0., 0.], [ 0., 0., 3., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 98., 0., 0.], [ 0., 0., 0., ..., 0., 99., 0.], [ 0., 0., 0., ..., 0., 0., 100.]]) Constraints: >>> Y = np.eye(n, 3) Initial guess for eigenvectors, should have linearly independent columns. Column dimension = number of requested eigenvalues. >>> X = np.random.rand(n, 3) Preconditioner in the inverse of A in this example: >>> invA = spdiags([1./vals], 0, n, n) The preconditiner must be defined by a function: >>> def precond( x ): ... return invA @ x The argument x of the preconditioner function is a matrix inside `lobpcg`, thus the use of matrix-matrix product ``@``. The preconditioner function is passed to lobpcg as a `LinearOperator`: >>> M = LinearOperator(matvec=precond, matmat=precond, ... shape=(n, n), dtype=float) Let us now solve the eigenvalue problem for the matrix A: >>> eigenvalues, _ = lobpcg(A, X, Y=Y, M=M, largest=False) >>> eigenvalues array([4., 5., 6.]) Note that the vectors passed in Y are the eigenvectors of the 3 smallest eigenvalues. The results returned are orthogonal to those. """ blockVectorX = X blockVectorY = Y residualTolerance = tol if maxiter is None: maxiter = 20 if blockVectorY is not None: sizeY = blockVectorY.shape[1] else: sizeY = 0 # Block size. if len(blockVectorX.shape) != 2: raise ValueError('expected rank-2 array for argument X') n, sizeX = blockVectorX.shape if verbosityLevel: aux = "Solving " if B is None: aux += "standard" else: aux += "generalized" aux += " eigenvalue problem with" if M is None: aux += "out" aux += " preconditioning\n\n" aux += "matrix size %d\n" % n aux += "block size %d\n\n" % sizeX if blockVectorY is None: aux += "No constraints\n\n" else: if sizeY > 1: aux += "%d constraints\n\n" % sizeY else: aux += "%d constraint\n\n" % sizeY print(aux) A = _makeOperator(A, (n, n)) B = _makeOperator(B, (n, n)) M = _makeOperator(M, (n, n)) if (n - sizeY) < (5 * sizeX): # warn('The problem size is small compared to the block size.' \ # ' Using dense eigensolver instead of LOBPCG.') sizeX = min(sizeX, n) if blockVectorY is not None: raise NotImplementedError('The dense eigensolver ' 'does not support constraints.') # Define the closed range of indices of eigenvalues to return. if largest: eigvals = (n - sizeX, n - 1) else: eigvals = (0, sizeX - 1) A_dense = A(np.eye(n, dtype=A.dtype)) B_dense = None if B is None else B(np.eye(n, dtype=B.dtype)) vals, vecs = eigh(A_dense, B_dense, eigvals=eigvals, check_finite=False) if largest: # Reverse order to be compatible with eigs() in 'LM' mode. vals = vals[::-1] vecs = vecs[:, ::-1] return vals, vecs if (residualTolerance is None) or (residualTolerance <= 0.0): residualTolerance = np.sqrt(1e-15) * n # Apply constraints to X. if blockVectorY is not None: if B is not None: blockVectorBY = B(blockVectorY) else: blockVectorBY = blockVectorY # gramYBY is a dense array. gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY) try: # gramYBY is a Cholesky factor from now on... gramYBY = cho_factor(gramYBY) except LinAlgError: raise ValueError('cannot handle linearly dependent constraints') _applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY) ## # B-orthonormalize X. blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX) ## # Compute the initial Ritz vectors: solve the eigenproblem. blockVectorAX = A(blockVectorX) gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX) _lambda, eigBlockVector = eigh(gramXAX, check_finite=False) ii = _get_indx(_lambda, sizeX, largest) _lambda = _lambda[ii] eigBlockVector = np.asarray(eigBlockVector[:, ii]) blockVectorX = np.dot(blockVectorX, eigBlockVector) blockVectorAX = np.dot(blockVectorAX, eigBlockVector) if B is not None: blockVectorBX = np.dot(blockVectorBX, eigBlockVector) ## # Active index set. activeMask = np.ones((sizeX, ), dtype=bool) lambdaHistory = [_lambda] residualNormsHistory = [] previousBlockSize = sizeX ident = np.eye(sizeX, dtype=A.dtype) ident0 = np.eye(sizeX, dtype=A.dtype) ## # Main iteration loop. blockVectorP = None # set during iteration blockVectorAP = None blockVectorBP = None iterationNumber = -1 restart = True explicitGramFlag = False while iterationNumber < maxiter: iterationNumber += 1 if verbosityLevel > 0: print('iteration %d' % iterationNumber) if B is not None: aux = blockVectorBX * _lambda[np.newaxis, :] else: aux = blockVectorX * _lambda[np.newaxis, :] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conj() * blockVectorR, 0) residualNorms = np.sqrt(aux) residualNormsHistory.append(residualNorms) ii = np.where(residualNorms > residualTolerance, True, False) activeMask = activeMask & ii if verbosityLevel > 2: print(activeMask) currentBlockSize = activeMask.sum() if currentBlockSize != previousBlockSize: previousBlockSize = currentBlockSize ident = np.eye(currentBlockSize, dtype=A.dtype) if currentBlockSize == 0: break if verbosityLevel > 0: print('current block size:', currentBlockSize) print('eigenvalue:', _lambda) print('residual norms:', residualNorms) if verbosityLevel > 10: print(eigBlockVector) activeBlockVectorR = _as2d(blockVectorR[:, activeMask]) if iterationNumber > 0: activeBlockVectorP = _as2d(blockVectorP[:, activeMask]) activeBlockVectorAP = _as2d(blockVectorAP[:, activeMask]) if B is not None: activeBlockVectorBP = _as2d(blockVectorBP[:, activeMask]) if M is not None: # Apply preconditioner T to the active residuals. activeBlockVectorR = M(activeBlockVectorR) ## # Apply constraints to the preconditioned residuals. if blockVectorY is not None: _applyConstraints(activeBlockVectorR, gramYBY, blockVectorBY, blockVectorY) ## # B-orthogonalize the preconditioned residuals to X. if B is not None: activeBlockVectorR = activeBlockVectorR - np.matmul( blockVectorX, np.matmul(blockVectorBX.T.conj(), activeBlockVectorR)) else: activeBlockVectorR = activeBlockVectorR - np.matmul( blockVectorX, np.matmul(blockVectorX.T.conj(), activeBlockVectorR)) ## # B-orthonormalize the preconditioned residuals. aux = _b_orthonormalize(B, activeBlockVectorR) activeBlockVectorR, activeBlockVectorBR = aux activeBlockVectorAR = A(activeBlockVectorR) if iterationNumber > 0: if B is not None: aux = _b_orthonormalize(B, activeBlockVectorP, activeBlockVectorBP, retInvR=True) activeBlockVectorP, activeBlockVectorBP, invR, normal = aux else: aux = _b_orthonormalize(B, activeBlockVectorP, retInvR=True) activeBlockVectorP, _, invR, normal = aux # Function _b_orthonormalize returns None if Cholesky fails if activeBlockVectorP is not None: activeBlockVectorAP = activeBlockVectorAP / normal activeBlockVectorAP = np.dot(activeBlockVectorAP, invR) restart = False else: restart = True ## # Perform the Rayleigh Ritz Procedure: # Compute symmetric Gram matrices: if activeBlockVectorAR.dtype == 'float32': myeps = 1 elif activeBlockVectorR.dtype == 'float32': myeps = 1e-4 else: myeps = 1e-8 if residualNorms.max() > myeps and not explicitGramFlag: explicitGramFlag = False else: # Once explicitGramFlag, forever explicitGramFlag. explicitGramFlag = True # Shared memory assingments to simplify the code if B is None: blockVectorBX = blockVectorX activeBlockVectorBR = activeBlockVectorR if not restart: activeBlockVectorBP = activeBlockVectorP # Common submatrices: gramXAR = np.dot(blockVectorX.T.conj(), activeBlockVectorAR) gramRAR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR) if explicitGramFlag: gramRAR = (gramRAR + gramRAR.T.conj()) / 2 gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX) gramXAX = (gramXAX + gramXAX.T.conj()) / 2 gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX) gramRBR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBR) gramXBR = np.dot(blockVectorX.T.conj(), activeBlockVectorBR) else: gramXAX = np.diag(_lambda) gramXBX = ident0 gramRBR = ident gramXBR = np.zeros((sizeX, currentBlockSize), dtype=A.dtype) def _handle_gramA_gramB_verbosity(gramA, gramB): if verbosityLevel > 0: _report_nonhermitian(gramA, 'gramA') _report_nonhermitian(gramB, 'gramB') if verbosityLevel > 10: # Note: not documented, but leave it in here for now np.savetxt('gramA.txt', gramA) np.savetxt('gramB.txt', gramB) if not restart: gramXAP = np.dot(blockVectorX.T.conj(), activeBlockVectorAP) gramRAP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP) gramPAP = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP) gramXBP = np.dot(blockVectorX.T.conj(), activeBlockVectorBP) gramRBP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP) if explicitGramFlag: gramPAP = (gramPAP + gramPAP.T.conj()) / 2 gramPBP = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorBP) else: gramPBP = ident gramA = bmat([[gramXAX, gramXAR, gramXAP], [gramXAR.T.conj(), gramRAR, gramRAP], [gramXAP.T.conj(), gramRAP.T.conj(), gramPAP]]) gramB = bmat([[gramXBX, gramXBR, gramXBP], [gramXBR.T.conj(), gramRBR, gramRBP], [gramXBP.T.conj(), gramRBP.T.conj(), gramPBP]]) _handle_gramA_gramB_verbosity(gramA, gramB) try: _lambda, eigBlockVector = eigh(gramA, gramB, check_finite=False) except LinAlgError: # try again after dropping the direction vectors P from RR restart = True if restart: gramA = bmat([[gramXAX, gramXAR], [gramXAR.T.conj(), gramRAR]]) gramB = bmat([[gramXBX, gramXBR], [gramXBR.T.conj(), gramRBR]]) _handle_gramA_gramB_verbosity(gramA, gramB) try: _lambda, eigBlockVector = eigh(gramA, gramB, check_finite=False) except LinAlgError: raise ValueError('eigh has failed in lobpcg iterations') ii = _get_indx(_lambda, sizeX, largest) if verbosityLevel > 10: print(ii) print(_lambda) _lambda = _lambda[ii] eigBlockVector = eigBlockVector[:, ii] lambdaHistory.append(_lambda) if verbosityLevel > 10: print('lambda:', _lambda) # # Normalize eigenvectors! # aux = np.sum( eigBlockVector.conj() * eigBlockVector, 0 ) # eigVecNorms = np.sqrt( aux ) # eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis, :] # eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector ) if verbosityLevel > 10: print(eigBlockVector) # Compute Ritz vectors. if B is not None: if not restart: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:sizeX + currentBlockSize] eigBlockVectorP = eigBlockVector[sizeX + currentBlockSize:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) pp += np.dot(activeBlockVectorP, eigBlockVectorP) app = np.dot(activeBlockVectorAR, eigBlockVectorR) app += np.dot(activeBlockVectorAP, eigBlockVectorP) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) bpp += np.dot(activeBlockVectorBP, eigBlockVectorP) else: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) app = np.dot(activeBlockVectorAR, eigBlockVectorR) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) if verbosityLevel > 10: print(pp) print(app) print(bpp) blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp else: if not restart: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:sizeX + currentBlockSize] eigBlockVectorP = eigBlockVector[sizeX + currentBlockSize:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) pp += np.dot(activeBlockVectorP, eigBlockVectorP) app = np.dot(activeBlockVectorAR, eigBlockVectorR) app += np.dot(activeBlockVectorAP, eigBlockVectorP) else: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) app = np.dot(activeBlockVectorAR, eigBlockVectorR) if verbosityLevel > 10: print(pp) print(app) blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app blockVectorP, blockVectorAP = pp, app if B is not None: aux = blockVectorBX * _lambda[np.newaxis, :] else: aux = blockVectorX * _lambda[np.newaxis, :] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conj() * blockVectorR, 0) residualNorms = np.sqrt(aux) # Future work: Need to add Postprocessing here: # Making sure eigenvectors "exactly" satisfy the blockVectorY constrains? # Making sure eigenvecotrs are "exactly" othonormalized by final "exact" RR # Computing the actual true residuals if verbosityLevel > 0: print('final eigenvalue:', _lambda) print('final residual norms:', residualNorms) if retLambdaHistory: if retResidualNormsHistory: return _lambda, blockVectorX, lambdaHistory, residualNormsHistory else: return _lambda, blockVectorX, lambdaHistory else: if retResidualNormsHistory: return _lambda, blockVectorX, residualNormsHistory else: return _lambda, blockVectorX
def lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20, largest=True, verbosityLevel=0, retLambdaHistory=False, retResidualNormsHistory=False): """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. Parameters ---------- A : {sparse matrix, dense matrix, LinearOperator} The symmetric linear operator of the problem, usually a sparse matrix. Often called the "stiffness matrix". X : array_like Initial approximation to the k eigenvectors. If A has shape=(n,n) then X should have shape shape=(n,k). B : {dense matrix, sparse matrix, LinearOperator}, optional the right hand side operator in a generalized eigenproblem. by default, B = Identity often called the "mass matrix" M : {dense matrix, sparse matrix, LinearOperator}, optional preconditioner to A; by default M = Identity M should approximate the inverse of A Y : array_like, optional n-by-sizeY matrix of constraints, sizeY < n The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank. Returns ------- w : array Array of k eigenvalues v : array An array of k eigenvectors. V has the same shape as X. Other Parameters ---------------- tol : scalar, optional Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps) maxiter : integer, optional maximum number of iterations by default: maxiter=min(n,20) largest : bool, optional when True, solve for the largest eigenvalues, otherwise the smallest verbosityLevel : integer, optional controls solver output. default: verbosityLevel = 0. retLambdaHistory : boolean, optional whether to return eigenvalue history retResidualNormsHistory : boolean, optional whether to return history of residual norms Examples -------- Solve A x = lambda B x with constraints and preconditioning. >>> from scipy.sparse import spdiags, issparse >>> from scipy.sparse.linalg import lobpcg, LinearOperator >>> n = 100 >>> vals = [np.arange(n, dtype=np.float64) + 1] >>> A = spdiags(vals, 0, n, n) >>> A.toarray() array([[ 1., 0., 0., ..., 0., 0., 0.], [ 0., 2., 0., ..., 0., 0., 0.], [ 0., 0., 3., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 98., 0., 0.], [ 0., 0., 0., ..., 0., 99., 0.], [ 0., 0., 0., ..., 0., 0., 100.]]) Constraints. >>> Y = np.eye(n, 3) Initial guess for eigenvectors, should have linearly independent columns. Column dimension = number of requested eigenvalues. >>> X = np.random.rand(n, 3) Preconditioner -- inverse of A (as an abstract linear operator). >>> invA = spdiags([1./vals[0]], 0, n, n) >>> def precond( x ): ... return invA * x >>> M = LinearOperator(matvec=precond, shape=(n, n), dtype=float) Here, ``invA`` could of course have been used directly as a preconditioner. Let us then solve the problem: >>> eigs, vecs = lobpcg(A, X, Y=Y, M=M, tol=1e-4, maxiter=40, largest=False) >>> eigs array([ 4., 5., 6.]) Note that the vectors passed in Y are the eigenvectors of the 3 smallest eigenvalues. The results returned are orthogonal to those. Notes ----- If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history). In the following ``n`` denotes the matrix size and ``m`` the number of required eigenvalues (smallest or largest). The LOBPCG code internally solves eigenproblems of the size 3``m`` on every iteration by calling the "standard" dense eigensolver, so if ``m`` is not small enough compared to ``n``, it does not make sense to call the LOBPCG code, but rather one should use the "standard" eigensolver, e.g. numpy or scipy function in this case. If one calls the LOBPCG algorithm for 5``m``>``n``, it will most likely break internally, so the code tries to call the standard function instead. It is not that n should be large for the LOBPCG to work, but rather the ratio ``n``/``m`` should be large. It you call the LOBPCG code with ``m``=1 and ``n``=10, it should work, though ``n`` is small. The method is intended for extremely large ``n``/``m``, see e.g., reference [28] in https://arxiv.org/abs/0705.2626 The convergence speed depends basically on two factors: 1. How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to vary ``m`` to make this better. 2. How well conditioned the problem is. This can be changed by using proper preconditioning. For example, a rod vibration test problem (under tests directory) is ill-conditioned for large ``n``, so convergence will be slow, unless efficient preconditioning is used. For this specific problem, a good simple preconditioner function would be a linear solve for A, which is easy to code since A is tridiagonal. *Acknowledgements* lobpcg.py code was written by Robert Cimrman. Many thanks belong to Andrew Knyazev, the author of the algorithm, for lots of advice and support. References ---------- .. [1] A. V. Knyazev (2001), Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method. SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541. :doi:`10.1137/S1064827500366124` .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc. https://arxiv.org/abs/0705.2626 .. [3] A. V. Knyazev's C and MATLAB implementations: https://bitbucket.org/joseroman/blopex """ blockVectorX = X blockVectorY = Y residualTolerance = tol maxIterations = maxiter if blockVectorY is not None: sizeY = blockVectorY.shape[1] else: sizeY = 0 # Block size. if len(blockVectorX.shape) != 2: raise ValueError('expected rank-2 array for argument X') n, sizeX = blockVectorX.shape if sizeX > n: raise ValueError('X column dimension exceeds the row dimension') A = _makeOperator(A, (n, n)) B = _makeOperator(B, (n, n)) M = _makeOperator(M, (n, n)) if (n - sizeY) < (5 * sizeX): # warn('The problem size is small compared to the block size.' \ # ' Using dense eigensolver instead of LOBPCG.') if blockVectorY is not None: raise NotImplementedError('The dense eigensolver ' 'does not support constraints.') # Define the closed range of indices of eigenvalues to return. if largest: eigvals = (n - sizeX, n - 1) else: eigvals = (0, sizeX - 1) A_dense = A(np.eye(n)) B_dense = None if B is None else B(np.eye(n)) vals, vecs = eigh(A_dense, B_dense, eigvals=eigvals, check_finite=False) if largest: # Reverse order to be compatible with eigs() in 'LM' mode. vals = vals[::-1] vecs = vecs[:, ::-1] return vals, vecs if residualTolerance is None: residualTolerance = np.sqrt(1e-15) * n maxIterations = min(n, maxIterations) if verbosityLevel: aux = "Solving " if B is None: aux += "standard" else: aux += "generalized" aux += " eigenvalue problem with" if M is None: aux += "out" aux += " preconditioning\n\n" aux += "matrix size %d\n" % n aux += "block size %d\n\n" % sizeX if blockVectorY is None: aux += "No constraints\n\n" else: if sizeY > 1: aux += "%d constraints\n\n" % sizeY else: aux += "%d constraint\n\n" % sizeY print(aux) ## # Apply constraints to X. if blockVectorY is not None: if B is not None: blockVectorBY = B(blockVectorY) else: blockVectorBY = blockVectorY # gramYBY is a dense array. gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY) try: # gramYBY is a Cholesky factor from now on... gramYBY = cho_factor(gramYBY) except Exception: raise ValueError('cannot handle linearly dependent constraints') _applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY) ## # B-orthonormalize X. blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX) ## # Compute the initial Ritz vectors: solve the eigenproblem. blockVectorAX = A(blockVectorX) gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX) _lambda, eigBlockVector = eigh(gramXAX, check_finite=False) ii = _get_indx(_lambda, sizeX, largest) _lambda = _lambda[ii] eigBlockVector = np.asarray(eigBlockVector[:, ii]) blockVectorX = np.dot(blockVectorX, eigBlockVector) blockVectorAX = np.dot(blockVectorAX, eigBlockVector) if B is not None: blockVectorBX = np.dot(blockVectorBX, eigBlockVector) ## # Active index set. activeMask = np.ones((sizeX, ), dtype=bool) lambdaHistory = [_lambda] residualNormsHistory = [] previousBlockSize = sizeX ident = np.eye(sizeX, dtype=A.dtype) ident0 = np.eye(sizeX, dtype=A.dtype) ## # Main iteration loop. blockVectorP = None # set during iteration blockVectorAP = None blockVectorBP = None for iterationNumber in xrange(maxIterations): if verbosityLevel > 0: print('iteration %d' % iterationNumber) aux = blockVectorBX * _lambda[np.newaxis, :] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0) residualNorms = np.sqrt(aux) residualNormsHistory.append(residualNorms) ii = np.where(residualNorms > residualTolerance, True, False) activeMask = activeMask & ii if verbosityLevel > 2: print(activeMask) currentBlockSize = activeMask.sum() if currentBlockSize != previousBlockSize: previousBlockSize = currentBlockSize ident = np.eye(currentBlockSize, dtype=A.dtype) if currentBlockSize == 0: break if verbosityLevel > 0: print('current block size:', currentBlockSize) print('eigenvalue:', _lambda) print('residual norms:', residualNorms) if verbosityLevel > 10: print(eigBlockVector) activeBlockVectorR = as2d(blockVectorR[:, activeMask]) if iterationNumber > 0: activeBlockVectorP = as2d(blockVectorP[:, activeMask]) activeBlockVectorAP = as2d(blockVectorAP[:, activeMask]) activeBlockVectorBP = as2d(blockVectorBP[:, activeMask]) if M is not None: # Apply preconditioner T to the active residuals. activeBlockVectorR = M(activeBlockVectorR) ## # Apply constraints to the preconditioned residuals. if blockVectorY is not None: _applyConstraints(activeBlockVectorR, gramYBY, blockVectorBY, blockVectorY) ## # B-orthonormalize the preconditioned residuals. aux = _b_orthonormalize(B, activeBlockVectorR) activeBlockVectorR, activeBlockVectorBR = aux activeBlockVectorAR = A(activeBlockVectorR) if iterationNumber > 0: aux = _b_orthonormalize(B, activeBlockVectorP, activeBlockVectorBP, retInvR=True) activeBlockVectorP, activeBlockVectorBP, invR = aux activeBlockVectorAP = np.dot(activeBlockVectorAP, invR) ## # Perform the Rayleigh Ritz Procedure: # Compute symmetric Gram matrices: xaw = np.dot(blockVectorX.T.conj(), activeBlockVectorAR) waw = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR) xbw = np.dot(blockVectorX.T.conj(), activeBlockVectorBR) if iterationNumber > 0: xap = np.dot(blockVectorX.T.conj(), activeBlockVectorAP) wap = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP) pap = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP) xbp = np.dot(blockVectorX.T.conj(), activeBlockVectorBP) wbp = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP) gramA = bmat([[np.diag(_lambda), xaw, xap], [xaw.T.conj(), waw, wap], [xap.T.conj(), wap.T.conj(), pap]]) gramB = bmat([[ident0, xbw, xbp], [xbw.T.conj(), ident, wbp], [xbp.T.conj(), wbp.T.conj(), ident]]) else: gramA = bmat([[np.diag(_lambda), xaw], [xaw.T.conj(), waw]]) gramB = bmat([[ident0, xbw], [xbw.T.conj(), ident]]) if verbosityLevel > 0: _report_nonhermitian(gramA, 3, -1, 'gramA') _report_nonhermitian(gramB, 3, -1, 'gramB') if verbosityLevel > 10: save(gramA, 'gramA') save(gramB, 'gramB') # Solve the generalized eigenvalue problem. _lambda, eigBlockVector = eigh(gramA, gramB, check_finite=False) ii = _get_indx(_lambda, sizeX, largest) if verbosityLevel > 10: print(ii) _lambda = _lambda[ii] eigBlockVector = eigBlockVector[:, ii] lambdaHistory.append(_lambda) if verbosityLevel > 10: print('lambda:', _lambda) ## # Normalize eigenvectors! ## aux = np.sum( eigBlockVector.conjugate() * eigBlockVector, 0 ) ## eigVecNorms = np.sqrt( aux ) ## eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis,:] # eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector ) if verbosityLevel > 10: print(eigBlockVector) ## # Compute Ritz vectors. if iterationNumber > 0: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:sizeX + currentBlockSize] eigBlockVectorP = eigBlockVector[sizeX + currentBlockSize:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) pp += np.dot(activeBlockVectorP, eigBlockVectorP) app = np.dot(activeBlockVectorAR, eigBlockVectorR) app += np.dot(activeBlockVectorAP, eigBlockVectorP) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) bpp += np.dot(activeBlockVectorBP, eigBlockVectorP) else: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) app = np.dot(activeBlockVectorAR, eigBlockVectorR) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) if verbosityLevel > 10: print(pp) print(app) print(bpp) blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp aux = blockVectorBX * _lambda[np.newaxis, :] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0) residualNorms = np.sqrt(aux) if verbosityLevel > 0: print('final eigenvalue:', _lambda) print('final residual norms:', residualNorms) if retLambdaHistory: if retResidualNormsHistory: return _lambda, blockVectorX, lambdaHistory, residualNormsHistory else: return _lambda, blockVectorX, lambdaHistory else: if retResidualNormsHistory: return _lambda, blockVectorX, residualNormsHistory else: return _lambda, blockVectorX
def lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20, largest=True, verbosityLevel=0, retLambdaHistory=False, retResidualNormsHistory=False): """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. Parameters ---------- A : {sparse matrix, dense matrix, LinearOperator} The symmetric linear operator of the problem, usually a sparse matrix. Often called the "stiffness matrix". X : array_like Initial approximation to the k eigenvectors. If A has shape=(n,n) then X should have shape shape=(n,k). B : {dense matrix, sparse matrix, LinearOperator}, optional the right hand side operator in a generalized eigenproblem. by default, B = Identity often called the "mass matrix" M : {dense matrix, sparse matrix, LinearOperator}, optional preconditioner to A; by default M = Identity M should approximate the inverse of A Y : array_like, optional n-by-sizeY matrix of constraints, sizeY < n The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank. tol : scalar, optional Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps) maxiter : integer, optional maximum number of iterations by default: maxiter=min(n,20) largest : bool, optional when True, solve for the largest eigenvalues, otherwise the smallest verbosityLevel : integer, optional controls solver output. default: verbosityLevel = 0. retLambdaHistory : boolean, optional whether to return eigenvalue history retResidualNormsHistory : boolean, optional whether to return history of residual norms Returns ------- w : array Array of k eigenvalues v : array An array of k eigenvectors. V has the same shape as X. lambdas : list of arrays, optional The eigenvalue history, if `retLambdaHistory` is True. rnorms : list of arrays, optional The history of residual norms, if `retResidualNormsHistory` is True. Examples -------- Solve A x = lambda B x with constraints and preconditioning. >>> from scipy.sparse import spdiags, issparse >>> from scipy.sparse.linalg import lobpcg, LinearOperator >>> n = 100 >>> vals = [np.arange(n, dtype=np.float64) + 1] >>> A = spdiags(vals, 0, n, n) >>> A.toarray() array([[ 1., 0., 0., ..., 0., 0., 0.], [ 0., 2., 0., ..., 0., 0., 0.], [ 0., 0., 3., ..., 0., 0., 0.], ..., [ 0., 0., 0., ..., 98., 0., 0.], [ 0., 0., 0., ..., 0., 99., 0.], [ 0., 0., 0., ..., 0., 0., 100.]]) Constraints. >>> Y = np.eye(n, 3) Initial guess for eigenvectors, should have linearly independent columns. Column dimension = number of requested eigenvalues. >>> X = np.random.rand(n, 3) Preconditioner -- inverse of A (as an abstract linear operator). >>> invA = spdiags([1./vals[0]], 0, n, n) >>> def precond( x ): ... return invA * x >>> M = LinearOperator(matvec=precond, shape=(n, n), dtype=float) Here, ``invA`` could of course have been used directly as a preconditioner. Let us then solve the problem: >>> eigs, vecs = lobpcg(A, X, Y=Y, M=M, largest=False) >>> eigs array([4., 5., 6.]) Note that the vectors passed in Y are the eigenvectors of the 3 smallest eigenvalues. The results returned are orthogonal to those. Notes ----- If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history). In the following ``n`` denotes the matrix size and ``m`` the number of required eigenvalues (smallest or largest). The LOBPCG code internally solves eigenproblems of the size 3``m`` on every iteration by calling the "standard" dense eigensolver, so if ``m`` is not small enough compared to ``n``, it does not make sense to call the LOBPCG code, but rather one should use the "standard" eigensolver, e.g. numpy or scipy function in this case. If one calls the LOBPCG algorithm for 5``m``>``n``, it will most likely break internally, so the code tries to call the standard function instead. It is not that n should be large for the LOBPCG to work, but rather the ratio ``n``/``m`` should be large. It you call LOBPCG with ``m``=1 and ``n``=10, it works though ``n`` is small. The method is intended for extremely large ``n``/``m``, see e.g., reference [28] in https://arxiv.org/abs/0705.2626 The convergence speed depends basically on two factors: 1. How well relatively separated the seeking eigenvalues are from the rest of the eigenvalues. One can try to vary ``m`` to make this better. 2. How well conditioned the problem is. This can be changed by using proper preconditioning. For example, a rod vibration test problem (under tests directory) is ill-conditioned for large ``n``, so convergence will be slow, unless efficient preconditioning is used. For this specific problem, a good simple preconditioner function would be a linear solve for A, which is easy to code since A is tridiagonal. *Acknowledgements* lobpcg.py code was written by Robert Cimrman. Many thanks belong to Andrew Knyazev, the author of the algorithm, for lots of advice and support. References ---------- .. [1] A. V. Knyazev (2001), Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method. SIAM Journal on Scientific Computing 23, no. 2, pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124 .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) in hypre and PETSc. https://arxiv.org/abs/0705.2626 .. [3] A. V. Knyazev's C and MATLAB implementations: https://bitbucket.org/joseroman/blopex """ blockVectorX = X blockVectorY = Y residualTolerance = tol maxIterations = maxiter if blockVectorY is not None: sizeY = blockVectorY.shape[1] else: sizeY = 0 # Block size. if len(blockVectorX.shape) != 2: raise ValueError('expected rank-2 array for argument X') n, sizeX = blockVectorX.shape if verbosityLevel: aux = "Solving " if B is None: aux += "standard" else: aux += "generalized" aux += " eigenvalue problem with" if M is None: aux += "out" aux += " preconditioning\n\n" aux += "matrix size %d\n" % n aux += "block size %d\n\n" % sizeX if blockVectorY is None: aux += "No constraints\n\n" else: if sizeY > 1: aux += "%d constraints\n\n" % sizeY else: aux += "%d constraint\n\n" % sizeY print(aux) A = _makeOperator(A, (n, n)) B = _makeOperator(B, (n, n)) M = _makeOperator(M, (n, n)) if (n - sizeY) < (5 * sizeX): # warn('The problem size is small compared to the block size.' \ # ' Using dense eigensolver instead of LOBPCG.') sizeX = min(sizeX, n) if blockVectorY is not None: raise NotImplementedError('The dense eigensolver ' 'does not support constraints.') # Define the closed range of indices of eigenvalues to return. if largest: eigvals = (n - sizeX, n-1) else: eigvals = (0, sizeX-1) A_dense = A(np.eye(n, dtype=A.dtype)) B_dense = None if B is None else B(np.eye(n, dtype=B.dtype)) vals, vecs = eigh(A_dense, B_dense, eigvals=eigvals, check_finite=False) if largest: # Reverse order to be compatible with eigs() in 'LM' mode. vals = vals[::-1] vecs = vecs[:, ::-1] return vals, vecs if (residualTolerance is None) or (residualTolerance <= 0.0): residualTolerance = np.sqrt(1e-15) * n # Apply constraints to X. if blockVectorY is not None: if B is not None: blockVectorBY = B(blockVectorY) else: blockVectorBY = blockVectorY # gramYBY is a dense array. gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY) try: # gramYBY is a Cholesky factor from now on... gramYBY = cho_factor(gramYBY) except LinAlgError: raise ValueError('cannot handle linearly dependent constraints') _applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY) ## # B-orthonormalize X. blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX) ## # Compute the initial Ritz vectors: solve the eigenproblem. blockVectorAX = A(blockVectorX) gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX) _lambda, eigBlockVector = eigh(gramXAX, check_finite=False) ii = _get_indx(_lambda, sizeX, largest) _lambda = _lambda[ii] eigBlockVector = np.asarray(eigBlockVector[:, ii]) blockVectorX = np.dot(blockVectorX, eigBlockVector) blockVectorAX = np.dot(blockVectorAX, eigBlockVector) if B is not None: blockVectorBX = np.dot(blockVectorBX, eigBlockVector) ## # Active index set. activeMask = np.ones((sizeX,), dtype=bool) lambdaHistory = [_lambda] residualNormsHistory = [] previousBlockSize = sizeX ident = np.eye(sizeX, dtype=A.dtype) ident0 = np.eye(sizeX, dtype=A.dtype) ## # Main iteration loop. blockVectorP = None # set during iteration blockVectorAP = None blockVectorBP = None iterationNumber = -1 while iterationNumber < maxIterations: iterationNumber += 1 if verbosityLevel > 0: print('iteration %d' % iterationNumber) if B is not None: aux = blockVectorBX * _lambda[np.newaxis, :] else: aux = blockVectorX * _lambda[np.newaxis, :] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0) residualNorms = np.sqrt(aux) residualNormsHistory.append(residualNorms) ii = np.where(residualNorms > residualTolerance, True, False) activeMask = activeMask & ii if verbosityLevel > 2: print(activeMask) currentBlockSize = activeMask.sum() if currentBlockSize != previousBlockSize: previousBlockSize = currentBlockSize ident = np.eye(currentBlockSize, dtype=A.dtype) if currentBlockSize == 0: break if verbosityLevel > 0: print('current block size:', currentBlockSize) print('eigenvalue:', _lambda) print('residual norms:', residualNorms) if verbosityLevel > 10: print(eigBlockVector) activeBlockVectorR = _as2d(blockVectorR[:, activeMask]) if iterationNumber > 0: activeBlockVectorP = _as2d(blockVectorP[:, activeMask]) activeBlockVectorAP = _as2d(blockVectorAP[:, activeMask]) if B is not None: activeBlockVectorBP = _as2d(blockVectorBP[:, activeMask]) if M is not None: # Apply preconditioner T to the active residuals. activeBlockVectorR = M(activeBlockVectorR) ## # Apply constraints to the preconditioned residuals. if blockVectorY is not None: _applyConstraints(activeBlockVectorR, gramYBY, blockVectorBY, blockVectorY) ## # B-orthonormalize the preconditioned residuals. aux = _b_orthonormalize(B, activeBlockVectorR) activeBlockVectorR, activeBlockVectorBR = aux activeBlockVectorAR = A(activeBlockVectorR) if iterationNumber > 0: if B is not None: aux = _b_orthonormalize(B, activeBlockVectorP, activeBlockVectorBP, retInvR=True) activeBlockVectorP, activeBlockVectorBP, invR = aux activeBlockVectorAP = np.dot(activeBlockVectorAP, invR) else: aux = _b_orthonormalize(B, activeBlockVectorP, retInvR=True) activeBlockVectorP, _, invR = aux activeBlockVectorAP = np.dot(activeBlockVectorAP, invR) ## # Perform the Rayleigh Ritz Procedure: # Compute symmetric Gram matrices: if B is not None: xaw = np.dot(blockVectorX.T.conj(), activeBlockVectorAR) waw = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR) xbw = np.dot(blockVectorX.T.conj(), activeBlockVectorBR) if iterationNumber > 0: xap = np.dot(blockVectorX.T.conj(), activeBlockVectorAP) wap = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP) pap = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP) xbp = np.dot(blockVectorX.T.conj(), activeBlockVectorBP) wbp = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP) gramA = bmat([[np.diag(_lambda), xaw, xap], [xaw.T.conj(), waw, wap], [xap.T.conj(), wap.T.conj(), pap]]) gramB = bmat([[ident0, xbw, xbp], [xbw.T.conj(), ident, wbp], [xbp.T.conj(), wbp.T.conj(), ident]]) else: gramA = bmat([[np.diag(_lambda), xaw], [xaw.T.conj(), waw]]) gramB = bmat([[ident0, xbw], [xbw.T.conj(), ident]]) else: xaw = np.dot(blockVectorX.T.conj(), activeBlockVectorAR) waw = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR) xbw = np.dot(blockVectorX.T.conj(), activeBlockVectorR) if iterationNumber > 0: xap = np.dot(blockVectorX.T.conj(), activeBlockVectorAP) wap = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP) pap = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP) xbp = np.dot(blockVectorX.T.conj(), activeBlockVectorP) wbp = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorP) gramA = bmat([[np.diag(_lambda), xaw, xap], [xaw.T.conj(), waw, wap], [xap.T.conj(), wap.T.conj(), pap]]) gramB = bmat([[ident0, xbw, xbp], [xbw.T.conj(), ident, wbp], [xbp.T.conj(), wbp.T.conj(), ident]]) else: gramA = bmat([[np.diag(_lambda), xaw], [xaw.T.conj(), waw]]) gramB = bmat([[ident0, xbw], [xbw.T.conj(), ident]]) if verbosityLevel > 0: _report_nonhermitian(gramA, 3, -1, 'gramA') _report_nonhermitian(gramB, 3, -1, 'gramB') if verbosityLevel > 10: _save(gramA, 'gramA') _save(gramB, 'gramB') # Solve the generalized eigenvalue problem. _lambda, eigBlockVector = eigh(gramA, gramB, check_finite=False) ii = _get_indx(_lambda, sizeX, largest) if verbosityLevel > 10: print(ii) print(_lambda) _lambda = _lambda[ii] eigBlockVector = eigBlockVector[:, ii] lambdaHistory.append(_lambda) if verbosityLevel > 10: print('lambda:', _lambda) # # Normalize eigenvectors! # aux = np.sum( eigBlockVector.conjugate() * eigBlockVector, 0 ) # eigVecNorms = np.sqrt( aux ) # eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis, :] # eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector ) if verbosityLevel > 10: print(eigBlockVector) # Compute Ritz vectors. if B is not None: if iterationNumber > 0: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize] eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) pp += np.dot(activeBlockVectorP, eigBlockVectorP) app = np.dot(activeBlockVectorAR, eigBlockVectorR) app += np.dot(activeBlockVectorAP, eigBlockVectorP) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) bpp += np.dot(activeBlockVectorBP, eigBlockVectorP) else: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) app = np.dot(activeBlockVectorAR, eigBlockVectorR) bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) if verbosityLevel > 10: print(pp) print(app) print(bpp) blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp else: if iterationNumber > 0: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize] eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) pp += np.dot(activeBlockVectorP, eigBlockVectorP) app = np.dot(activeBlockVectorAR, eigBlockVectorR) app += np.dot(activeBlockVectorAP, eigBlockVectorP) else: eigBlockVectorX = eigBlockVector[:sizeX] eigBlockVectorR = eigBlockVector[sizeX:] pp = np.dot(activeBlockVectorR, eigBlockVectorR) app = np.dot(activeBlockVectorAR, eigBlockVectorR) if verbosityLevel > 10: print(pp) print(app) blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app blockVectorP, blockVectorAP = pp, app if B is not None: aux = blockVectorBX * _lambda[np.newaxis, :] else: aux = blockVectorX * _lambda[np.newaxis, :] blockVectorR = blockVectorAX - aux aux = np.sum(blockVectorR.conjugate() * blockVectorR, 0) residualNorms = np.sqrt(aux) if verbosityLevel > 0: print('final eigenvalue:', _lambda) print('final residual norms:', residualNorms) if retLambdaHistory: if retResidualNormsHistory: return _lambda, blockVectorX, lambdaHistory, residualNormsHistory else: return _lambda, blockVectorX, lambdaHistory else: if retResidualNormsHistory: return _lambda, blockVectorX, residualNormsHistory else: return _lambda, blockVectorX