def BB(ω):  #ω: eV
    ε = 1 - Ωp**2 / (ω * (ω + 1j * Γ0))

    α = (ω**2 + 1j * ω * Γ1)**.5
    za = (α - ω1) / (2**.5 * σ1)
    zb = (α + ω1) / (2**.5 * σ1)
    ε += 1j * π**.5 * f1 * ωp**2 / (2**1.5 * α * σ1) * (w(za) + w(zb))  #χ1

    α = (ω**2 + 1j * ω * Γ2)**.5
    za = (α - ω2) / (2**.5 * σ2)
    zb = (α + ω2) / (2**.5 * σ2)
    ε += 1j * π**.5 * f2 * ωp**2 / (2**1.5 * α * σ2) * (w(za) + w(zb))  #χ2

    α = (ω**2 + 1j * ω * Γ3)**.5
    za = (α - ω3) / (2**.5 * σ3)
    zb = (α + ω3) / (2**.5 * σ3)
    ε += 1j * π**.5 * f3 * ωp**2 / (2**1.5 * α * σ3) * (w(za) + w(zb))  #χ3

    α = (ω**2 + 1j * ω * Γ4)**.5
    za = (α - ω4) / (2**.5 * σ4)
    zb = (α + ω4) / (2**.5 * σ4)
    ε += 1j * π**.5 * f4 * ωp**2 / (2**1.5 * α * σ4) * (w(za) + w(zb))  #χ4

    α = (ω**2 + 1j * ω * Γ5)**.5
    za = (α - ω5) / (2**.5 * σ5)
    zb = (α + ω5) / (2**.5 * σ5)
    ε += 1j * π**.5 * f5 * ωp**2 / (2**1.5 * α * σ5) * (w(za) + w(zb))  #χ5

    return ε
Пример #2
0
def NormalizedVoigt(x, *params):
    """
    The Voigt function. The result of the convolution of a Lorentzian with one or more
    Gaussians. Often used to describe an intrinsically Lorentzian absorption profile blurred
    by Gaussian broadening from thermal motions and turbulance and another Gaussian instrument
    profile. The result is also the real part of the Faddevva function (the complex probability
    function), implemented by Scipy as wofz in scipy.special

    This returns a normalized profile. The name `NormalizedVoigt` is to keep the convention
    for the rest of this module. The amplitude controlling Voigt profile `Voigt` evaluates
    this function first for `x - x0 = 0` to empirically `un-normalize` it before scaling by the
    requested amplitude

    Reference:
        Olivero, J.J; R.L. Longbothum. ``Empirical fits to the Voigt line width:
        A brief review''. Journal of Quantitative Spectroscopy and Radiative Transfer. Vol 17.
        Issue 2. pages 223-236. Feb 1977

    Parameters: `x0, sigma, gamma = params`

        x0    -> center of the profile
        sigma -> the Gaussian width
        gamma -> the Lorentzian width
    """
    x0, sigma, gamma = params
    return w( ((x-x0) + 1j*gamma) / (sigma * np.sqrt(np.pi)) ).real / (
        sigma * np.sqrt(2 * np.pi) )
Пример #3
0
def BB(wl):  #wl: eV
    e = 1 - Omp**2 / (wl * (wl + 1j * L0))

    a = (wl**2 + 1j * wl * L1)**.5
    za = (a - w1) / (2**.5 * o1)
    zb = (a + w1) / (2**.5 * o1)
    e += 1j * p**.5 * f1 * wp**2 / (2**1.5 * a * o1) * (w(za) + w(zb))  #x1

    a = (wl**2 + 1j * wl * L2)**.5
    za = (a - w2) / (2**.5 * o2)
    zb = (a + w2) / (2**.5 * o2)
    e += 1j * p**.5 * f2 * wp**2 / (2**1.5 * a * o2) * (w(za) + w(zb))  #x2

    a = (wl**2 + 1j * wl * L3)**.5
    za = (a - w3) / (2**.5 * o3)
    zb = (a + w3) / (2**.5 * o3)
    e += 1j * p**.5 * f3 * wp**2 / (2**1.5 * a * o3) * (w(za) + w(zb))  #x3

    a = (wl**2 + 1j * wl * L4)**.5
    za = (a - w4) / (2**.5 * o4)
    zb = (a + w4) / (2**.5 * o4)
    e += 1j * p**.5 * f4 * wp**2 / (2**1.5 * a * o4) * (w(za) + w(zb))  #x4

    return e
Пример #4
0
def bv(f, f0, b0, T, s):
    '''
    Function representing convolution of the lorentzian line shape of the red transition and gaussian maxwell
    distribution. This is taken from 5.13 from Chang chi's thesis and added the effect of saturation parameter.

    Args:
        f: numpy.array, frequency vector
        f0: float, resonance frequency or centre of the spectrum
        b0: float, optical depth at resonance at zero temperature
        T: float, temperature in micro K
        s: float, saturation parameter of the probe, :math:`I/I_s`.

    Returns:
        optical depth for frequencies f in the shape f.
    '''
    gamma = 2 * pi * 7.5 * milli
    vavg = np.sqrt(T * micro * Boltzmann / (87 * m_p))
    k = 2 * pi / (689 * nano)
    x = w((2 * pi * (f - f0) + 1j * gamma * np.sqrt(1 + s) / 2) * 1e6 /
          (np.sqrt(2) * k * vavg))
    return b0 * np.sqrt(pi / 8) * (1 /
                                   (1 + s)) * (gamma * np.sqrt(1 + s) * 1e6 /
                                               (k * vavg)) * x.real