Пример #1
0
 def getPDF(self, points=None):
     """
     A Chebyshev probability density function.
     
     :param Chebyshev self:
         An instance of the Chebyshev (arcsine) class.
     :param points:
         Matrix of points for defining the probability density function.
     :return:
         An array of N the support of the Chebyshev (arcsine) distribution.
     :return:
         Probability density values along the support of the Chebyshev (arcsine) distribution.
     """
     if points is not None:
         return arcsine.pdf(points)
     else:
         raise (ValueError, 'Please digit an input for getPDF method')
 def getPDF(self, points=None):
     """
     A Chebyshev probability density function.
     
     :param Chebyshev self:
         An instance of the Chebyshev (arcsine) class.
     :param points:
         Matrix of points for defining the probability density function.
     :return:
         An array of N the support of the Chebyshev (arcsine) distribution.
     :return:
         Probability density values along the support of the Chebyshev (arcsine) distribution.
     """
     if points is not None:
         return arcsine.pdf(points)
     else:
         raise(ValueError, 'Please digit an input for getPDF method')
Пример #3
0
from scipy.stats import arcsine
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)

# Calculate a few first moments:

mean, var, skew, kurt = arcsine.stats(moments='mvsk')

# Display the probability density function (``pdf``):

x = np.linspace(arcsine.ppf(0.01),
                arcsine.ppf(0.99), 100)
ax.plot(x, arcsine.pdf(x),
       'r-', lw=5, alpha=0.6, label='arcsine pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = arcsine()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = arcsine.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals))
# True

# Generate random numbers:
r = anglit.rvs(size=1000)
#And compare the histogram:
ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()

#arcsine Continuous distributions¶
from scipy.stats import arcsine
import matplotlib.pyplot as plt

fig, ax = plt.subplots(1, 1)
#Calculate a few first moments:
mean, var, skew, kurt = arcsine.stats(moments='mvsk')
#Display the probability density function (pdf):
x = np.linspace(arcsine.ppf(0.01), arcsine.ppf(0.99), 100)
ax.plot(x, arcsine.pdf(x), 'r-', lw=5, alpha=0.6, label='arcsine pdf')
#Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
#Freeze the distribution and display the frozen pdf:
rv = arcsine()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
#Check accuracy of cdf and ppf:
vals = arcsine.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals))
True
#Generate random numbers:
r = arcsine.rvs(size=1000)
#And compare the histogram:
ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()