Пример #1
0
    def plot_distribution(self):

        x = range(-5, 100, 1)

        scale_range = np.arange(20.0, 100.0, 1)
        data = []
        for i in [1, 3, 5, 7, 8, 9, 10, 20, 30, 40, 50]:
            y = 2 + 10 * levy.cdf(x, loc=0, scale=i)
            trace = go.Scatter(x=x,
                               y=y,
                               mode='lines',
                               name='scale={}'.format(i))
            data.append(trace)

        # py.sign_in(Config.SecretKeys.plotly_username(), Config.SecretKeys.plotly_password())

        figure = go.Figure(data=data)

        offline.plot(figure,
                     output_type='file',
                     auto_open=False,
                     filename=os.path.join('/home/TRAX/pauly/Desktop/result',
                                           'distribution.html'))
# Display the probability density function (``pdf``):

x = np.linspace(levy.ppf(0.01), levy.ppf(0.99), 100)
ax.plot(x, levy.pdf(x), 'r-', lw=5, alpha=0.6, label='levy pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = levy()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = levy.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], levy.cdf(vals))
# True

# Generate random numbers:

r = levy.rvs(size=1000)

# And compare the histogram:

ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()
Пример #3
0
 def levyCalculate(x, loc=0, scale=1):
     return levy.cdf(x, loc, scale)
Пример #4
0
from scipy.stats import levy
print(levy.cdf(6,3,3))
Пример #5
0
from scipy.stats import levy
print(levy.cdf(6, 3, 3))