Пример #1
0
def opt_n(n):
    stderr_n=sigma/n**.5
    lam_n=(mean_h1-mean_h0)/stderr_n
    alpha_xval_n=t.isf(alphas,df=n-1,scale=stderr_n)
    betah_n=nct.cdf(alpha_xval_n,df=n-1,nc=lam_n,scale=stderr_n)
    if sided==2:
        betal_n=nct.cdf(-alpha_xval_n,df=n-1,nc=lam_n)
        betacalc_n=betah_n-betal_n
    else:
        betacalc_n=betah_n
    
    return betacalc_n
Пример #2
0
def t_test_power(alpha, mu_1, mu_2, n_1, n_2, sigma_1, sigma_2):
    nu = ((sigma_1**2 / n_1 + sigma_2**2 / n_2)**2) / ((
        (sigma_1**2 / n_1)**2) / (n_1 - 1) + ((sigma_2**2 / n_2)**2) /
                                                       (n_2 - 1))

    theta = (mu_1 - mu_2) / ((sigma_1**2 / n_1 + sigma_2**2 / n_2)**0.5)

    t_cut = t.ppf(1 - alpha / 2, nu)

    power = 1 - (nct.cdf(t_cut, nu, theta) - nct.cdf(-t_cut, nu, theta))

    return power
Пример #3
0
def pt(q,df,ncp=0):
    """
    Calculates the cumulative of the t-distribution
    """
    from scipy.stats import t,nct
    if ncp==0:
        result=t.cdf(x=q,df=df,loc=0,scale=1)
    else:
        result=nct.cdf(x=q,df=df,nc=ncp,loc=0,scale=1)
    return result
Пример #4
0
def g_(p, n, K):
	from scipy.stats import nct
	return 1 - nct.cdf(sqrt(n) * K, n-1, sqrt(n) * x_scipy(p))
Пример #5
0
# Display the probability density function (``pdf``):

x = np.linspace(nct.ppf(0.01, df, nc), nct.ppf(0.99, df, nc), 100)
ax.plot(x, nct.pdf(x, df, nc), 'r-', lw=5, alpha=0.6, label='nct pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = nct(df, nc)
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = nct.ppf([0.001, 0.5, 0.999], df, nc)
np.allclose([0.001, 0.5, 0.999], nct.cdf(vals, df, nc))
# True

# Generate random numbers:

r = nct.rvs(df, nc, size=1000)

# And compare the histogram:

ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)
plt.show()
Пример #6
0
lam=(mean_h1-mean_h0)/stderr
dsr=mean_h1/sigma

#set up x axis for plotting
xmin=mean_h0-3*stderr
xmax=mean_h1+3*stderr
xs=np.linspace(xmin,xmax,200)

#define H0 distribution
h0pdf=t.pdf(xs,df=n-1,loc=mean_h0,scale=stderr)
alpha_xval=t.isf(alphas,df=n-1,loc=mean_h0,scale=stderr)
ymax=h0pdf.max()

#define H1 distribution
h1pdf=nct.pdf(xs,df=n-1,nc=lam,scale=stderr)
betah=nct.cdf(alpha_xval,df=n-1,nc=lam,scale=stderr)
if sided==1.2:
    betal=nct.cdf(-alpha_xval,df=n-1,nc=lam)
    betacalc=betah-betal
else:
    betacalc=betah

#plot results
plt.plot(xs,h0pdf,label="H0")
plt.plot(xs,h1pdf,label="H1")
plt.axvline(alpha_xval,ls="--",color="blue")
if sided==2:
    plt.fill_between(xs,0,h0pdf,where=(xs>alpha_xval)|(xs<-alpha_xval),color="blue",alpha=.2,
                     label="alpha")
    plt.fill_between(xs,0,h1pdf,where=(xs<alpha_xval)&(xs>-alpha_xval),color="orange",alpha=.2,
                     label="beta")
Пример #7
0
def g_(p, n, K):
    from scipy.stats import nct
    return 1 - nct.cdf(sqrt(n) * K, n - 1, sqrt(n) * x_scipy(p))