Пример #1
0
 def uniform_type_1(a, b, x1, x2):
     γ = b
     f = 1 / (γ - a)
     mean = uniform.mean(a, b - a)
     var = uniform.var(a, b - a)
     p = uniform.cdf(x2, a, b - a) - uniform.cdf(x1, a, b - a)
     return γ, mean, var, p, f, a, b
Пример #2
0
 def uniform_type_2(a, b, x1, x2):
     γ = (a * b - 1) / a
     f = a
     a = γ
     mean = uniform.mean(a, b - a)
     var = uniform.var(a, b - a)
     p = uniform.cdf(x2, a, b - a) - uniform.cdf(x1, a, b - a)
     return γ, mean, var, p, f, a, b
Пример #3
0
 def uniform_type_4(a, b, x1, x2):
     γ = 1 / a
     f = a
     a = (a * b - 1) / (2 * a)
     b = a + γ
     mean = uniform.mean(a, b - a)
     var = uniform.var(a, b - a)
     p = uniform.cdf(x2, a, b - a) - uniform.cdf(x1, a, b - a)
     return γ, mean, var, p, f, a, b
 def var(self, dist):
     return uniform.var(*self._get_params(dist))
Пример #5
0
Файл: td1.py Проект: linkzl/insa
# L'appel de la fonction permet de recevoir une version 'frozen' de la PDF
rv = uniform()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

vals = uniform.ppf([0.001, 0.5, 0.999])

# Return True ou False si les elements sont d'un vecteur sont egaux (a tolerance pres)
np.allclose([0.001, 0.5, 0.999], uniform.cdf(vals))


# Retourne des variables aleatoires
r = uniform.rvs(size=TAILLE_ECHANTILLON)

# Permet d'afficher l'esperance et la variance
str_esp_var_emp  = "V_EMP = " + str(uniform.var())
ax.plot([], [], "g", label=str_esp_var_emp)

# Histogramme
ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
ax.legend(loc='best', frameon=False)


# ============================================= #
# ============= UNIFORME DISCRETE ============= #
# ============================================= #
fig, ax = plt.subplots(1, 1)

low, high = 7, 31
mean, var, skew, kurt = randint.stats(low, high, moments='mvsk')
 def var(self, dist):
     return uniform.var(*self._get_params(dist))