Пример #1
0
def zip_cdf(x_arr, a, max_obs):
	#print x_arr
	result = []
	for x in x_arr:
		if x <= max_obs:
			result.append( zipf.cdf(x, a) / zipf.cdf(max_obs, a))
	#print result
	return result
Пример #2
0
 def _generate_zipf_queries(self):
     a = 1.5
     queries = []
     for i in range(QUERY_SIZE):
         query = []
         for j in range(DIM):
             start = np.random.zipf(a)
             while (zipf.cdf(start, a=a) + self.perColSelectivity >= 1):
                 start = np.random.zipf(a)
             end = zipf.ppf(zipf.cdf(start, a=a) + self.perColSelectivity, a=a)
             query.append(start)
             query.append(end)
         queries.append(query)
     return queries
Пример #3
0
 def test_zipfian_asymptotic(self):
     # test limiting case that zipfian(a, n) -> zipf(a) as n-> oo
     a = 6.5
     N = 10000000
     k = np.arange(1, 21)
     assert_allclose(zipfian.pmf(k, a, N), zipf.pmf(k, a))
     assert_allclose(zipfian.cdf(k, a, N), zipf.cdf(k, a))
     assert_allclose(zipfian.sf(k, a, N), zipf.sf(k, a))
     assert_allclose(zipfian.stats(a, N, moments='msvk'),
                     zipf.stats(a, moments='msvk'))
Пример #4
0
x = np.arange(zipf.ppf(0.01, a), zipf.ppf(0.99, a))
ax.plot(x, zipf.pmf(x, a), 'bo', ms=8, label='zipf pmf')
ax.vlines(x, 0, zipf.pmf(x, a), colors='b', lw=5, alpha=0.5)

# Alternatively, the distribution object can be called (as a function)
# to fix the shape and location. This returns a "frozen" RV object holding
# the given parameters fixed.

# Freeze the distribution and display the frozen ``pmf``:

rv = zipf(a)
ax.vlines(x,
          0,
          rv.pmf(x),
          colors='k',
          linestyles='-',
          lw=1,
          label='frozen pmf')
ax.legend(loc='best', frameon=False)
plt.show()

# Check accuracy of ``cdf`` and ``ppf``:

prob = zipf.cdf(x, a)
np.allclose(x, zipf.ppf(prob, a))
# True

# Generate random numbers:

r = zipf.rvs(a, size=1000)